Fermilab **ENERGY** Office of Science

WBS 121.3.11 Cryogenics

SC Acceleration Modules and Cryogenics

<u>Anindya Chakravarty</u> and Arkadiy Klebaner PIP-II Director's Review 10-12 October 2017

In partnership with: India Institutes Fermilab Collaboration Istituto Nazionale di Fisica Nucleare Science and Technology Facilities Council

Outline

- System overview
- About Me
- Performance Requirements
- Conceptual Design, Maturity
- Scope/Deliverables
- Interfaces
- Organization
- Technical Progress to Date/Design Review Plan
- ESH&Q
- Cost
- Risk
- Schedule
- Summary

About Me:

- Role in PIP-II: Scientist
 - Superfluid Helium Cryogenic Plant and associated systems

- Relevant experience:
 - SO-G, CrTD, BARC (current position)
 - Group Leader, CrTD, BARC
 - Development of helium liquefaction and refrigeration systems at BARC
 - Development of cryogenic turboexpanders at BARC
 - Ph. D. in Cryogenic Engineering

System Overview

- Fully segmented Linac
- Single cold box with turbines and cold

Gas Header

- Distribution box located in the refrigerator room
- Cryogenic transferline with bayonet cans that runs parallel to the cryomodules

WBS 121.11.3 Requirements flow down

PIP-II Conceptual Design Report

PIP-II Conceptual Design Report

Engineering Manual, Fermilab ESH&Q Manual

Cryomodules requirement documents

TC#ED0001313, TC#ED0001316, TC#ED0001829, TC#ED0001830, TC#ED0001322

→Cryogenic System

Functional Requirements Specifications (TC#ED0003531) Engineering Specifications (TC#ED0005493,5587, etc.) Design Criteria Documents (TC#ED0004748, 6895, etc.) Engineering Notes (TC#ED0003531,6860, 6901, etc.) Interface Control Documents (TC#ED0006893)

🞝 Fermilab

Key Requirements

Details are in TC#ED0003531

- Project Key Performance Parameters and Physics Requirements shall be met
- Linac operating modes:
 - CW or pulsed mode
 - 2.0 K in the standby mode
 - 4.5 K in standby mode
 - Cool-down and warm-up
- Cavity helium pressure 31 mbar
- Cavity helium pressure stability $\rightarrow \pm 0.1$ mbar
- Expected availability during scheduled beam operation 98%
- Support cool-down or warm-up of the Linac in < 20 days

Key Requirements

Cryomodule Static and Dynamic Heat loads

СМ	No. of CM	2K CW mode, (W)	2K Pulsed mode, (W)	5K Intercept, (W)	70 K Shield, (W)
HWR	1	61	61	60	250
SSR1	2	70	26	176	332
SSR2	7	429	83	434	882
650 MHz Lowβ	11	633	54	176	528
650 MHz Highβ	4	535	43	128	344
TOTAL		1728	267	974	2336

Requirements are defined and traceable

‡ Fermilab

Cryogenic System Design – Conceptual Design

Cryogenic Plant Design – Conceptual Design

Alternative

‡ Fermilab

PIP-II Cryogenic Distribution System (CDS) – Conceptual Design

- Fully segmented Linac
- Distribution box located in the refrigerator room
- Cryogenic transferline with bayonet cans that runs parallel to the cryomodules

🛟 Fermilab

Auxiliary Systems – Conceptual Design

- Warm and cold interconnect piping
- Warm helium storage tanks
- Liquid helium Dewar
- Helium recovery system
- Initial system purification equipment

Reuse from the Tevatron

Charge #1

5 Fermilab

Conceptual design is supporting key design requirements

Scope

- PIP-II Cryogenic Plant (121.3.11.2)
- PIP-II Cryogenic Distribution System (121.3.11.3)
- PIP2IT Cryogenic Distribution System (121.3.11.1)

Scope – Cryogenic Plant

• 2kW at 2.0 K Cryogenic plant

 Warm recirculation compressors with associated cooling, oilremoval systems and dryers, gas management system, refrigerator cold box(s) with heat exchangers, turbines, cold compressors, plant controls and instrumentation, acceptance test cryostat, and commissioning services → DAE/BARC Deliverables

Ancillary support equipment

- Warm and cold interconnect piping, helium purification system, helium gas and liquid storage, liquid nitrogen storage – FNAL
- Plant equipment installation services
 - Rigging, welding, cabling, leak checking, pressure testing FNAL

Scope – Cryogenic Distribution System (CDS)

- Design and fabricate components needed to feed and return the cryogens to the Linac components in accordance with functional requirements and other applicable specifications including:
 - Distribution Box
 - Tunnel cryogenic transferlines
 - Cryomodule bayonet can(s)
 - Vacuum insulated jumpers
 - Helium recovery headers
 - Turn around box
 - Pressure safety systems

Scope – PIP2IT Cryogenic Distribution System

- Design, fabricate, install, and commission components needed to feed and return the cryogens to the PIP2IT cryogenic system in accordance with functional requirements and other applicable specifications including:
 - External transferline
 - Cave transferline and turn around box
 - Vacuum insulated jumpers (u-tubes)
 - Cryogenic instrumentation and controls
 - Warm recovery headers
 - Installation and commissioning services
 - Transfer to operation services

Charge #2

Cryogenic system technical scope is defined for FNAL and BARC

Interfaces

Cryogenic System interfaces with the following sub systems:

- Conventional Facilities (WBS 121.5)
- Control System (WBS 121.3.17)
- ✤ HWR (WBS 121.3.4)
- ✤ HB650 (WBS 121.3.8)
- Installation, Integration, Commissioning (WBS 121.3.22)
- ✤ LB650 (WBS 121.3.7)
- ✤ Safety Systems (WBS 121.3.20)
- ✤ SSR1 (WBS 121.3.5)
- ✤ SSR2 (WBS 121.3.6)
- Vacuum System (WBS 121.3.18)

PIP-II DocDB doc#1160-v3 «PIP-II Interface Matrix » Cryogenic System Interface Control Document (ICD) TC#ED0006893

- Interfaces are defined and documented
- The level of interface details is commensurate for the current project stage

Qualified project personnel are in place at Fermilab and BARC

Technical Progress to Date - Cryogenic Plant

Baseline Cryoplant Specifications

Refrigeration	2K (W)	5–9K (W)	35 – 75K (W)
Capacity	1,900	1,500	9,100
Supply Pressure	2.2 ≤ P ≤ 4 bar	2.2 ≤ P ≤ 4 bar	3 ≤ P ≤ 18 bar
Return Pressure	27 mbar	2.2 ≤ P ≤ 4 bar	3 ≤ P ≤ 18 bar
Supply Temp	≤ 4.5 K	≤ 4.5 K	35 – 40 K
Return Temp	≤ 3.8 K	≤ 9 K	≤ 80 K

Technical Progress to Date - PIP-II Cryogenic Distribution System

- Developed preliminary detailed list of requirements
- Defined preliminary loads, steady-state and transient modes TC#ED0003531
- Defined preliminary interfaces and boundaries TC#ED0006893
- Surveyed similar designs
- Refined heat load estimates TC#ED0003531
- Interface Control Document TC#ED0006893
- Valve and Instrument List TC#ED0006894
- CDS Functional Analysis TC#ED0006895
- Bayonet Box Functional Analysis TC#ED0006896
- Cryomodule Bayonet Boxes P&ID TC#ED0006897
- Site Layout of Cryogenic Distribution Lines TC#ED0006898
- Pressure drop calculations TC#ED0006899
- Preliminary relief valves calculations TC#ED0006900
- Preliminary piping layout TC#ED0006901

Technical Progress to Date - PIP2IT

- External transferline is under fabrication at Fermilab
- Cave transferline design-built contract was awarded to Demaco B.V. Holland
- Integration and installation plans are being developed

Technical Progress to Date - Cave transferline

‡ Fermilab

Technical Progress to Date - CM bayonet boxes

Cryogenic System Design

24

 WBS 121.3.11 Design is sufficiently developed and supported for the current state of the project

Alternative solutions have been analyzed

Design Review Plan

- Cryogenic System is subject to Project Reviews
- Divi/Dept review procedures based on the Fermilab Engineering Manual
- Technical reviews (PDR, FDR, PRR whenever appropriate)
- PIP2IT CDS Internal Review April 2017
 - all recommendations are closed
- PIP2IT Cave TL
 - Preliminary Design Review October 2017
 - Final Design Review November 2017
 - Production Readiness Review January 2018
- Cryogenic Plant
 - ESD review April 2016
 - BARC committee review May 2016
 - All recommendations are closed, RFP was issued December 2016
 - PO likely to be released by mid 2018

Appropriate number of engineering and project reviews have been completed or planned

ESH&Q

- PIP-II Cryogenic system will use compressed and liquefied Helium
- This presents following potential hazards:
 - > Extreme cold hazard
 - Oxygen Deficiency Hazard (ODH)
 - > Oxygen enriched hazard
 - > Over pressurization or explosion due to rapid expansion
 - High noise levels
- The approach to protection from hazards by minimizing potential hazards at levels as low as is reasonable will be incorporated in a design for the PIP-II Cryogenic system
 - Utilizing National and International Codes and Standards for pressure systems design
 - Segment insulating vacuum (reduces release rate)
 - > Move relief valves out of the tunnel wherever possible
 - Pipe all relief valves outside (wherever possible)
 - Reduce heat flux by adding insulation
 - Provide barriers to minimize external effects/damages
- Project ISM and QA plans (docdb #141 and 142)

Cryogenic System is designed to be safe and to minimize impact on the environment

BOE Summary

WBS Number	Title	Docdb #
121.3.11.1	PIP2IT CDS	297-v4
121.3.11.2	PIP-II Cryoplant	300-v3
121.3.11.3	PIP-II CDS	309-v4

- Labor and M&S estimate cover the entire scope of work defined in the WBS
- Cost Estimating procedure #12.PM-005
- TC#ED0003758 "Assumptions for Cryogenic Components Estimate"
- Historical data and recent vendor quotes are used
- No contingency is included
- P6 contains raw hours and dollars

Cost Estimate is documented using consistent assumptions and is traceable

‡ Fermilab

Cost Summary

Charge #2

WBS Element	Hours	Lab	or (\$000)	Μ	&S (\$000)	Es	t. Uncerta			
121.3.11 - Linac - CRYOgenics (CRYO)	P6 Hours	P6	Base Cost	P6	Base Cost		Total	% of Base	{	otal Cost I. Uncrty.
121.3.11.1 - Linac - CRYO - PIP2IT Cryo Distribution System (CDS)	4,983	\$	579.2	\$	696.7	\$	255.2	20.0%	\$	1,531.1
121.3.11.2 - Linac - CRYO - PIP-II CryoPlant	27,444	\$	4,210.6	\$	5,781.9	\$	2,935.7	29.4%	\$	12,928.1
121.3.11.3 - Linac - CRYO - PIP-II Cryo Distribution System (CDS)	25,174	<u>\$</u>	2,994.6	<u>\$</u>	4,247.1	<u>\$</u>	1,873.0	<u>25.9</u> %	<u>\$</u>	9,114.7
Grand Total	57,601	\$	7,784.4	\$	10,725.7	\$	5,063.9	27.4%	\$	23,573.9
Note: P6 base cost = BOE + overheads and e										

- Oversee delivery of all scope of WBS 121.11.3
- Costs generated from resource loaded schedule
- Estimate developed by people experienced with cryogenics. Estimate Uncertainty follows project guidelines
- Collaborative methods used while developing cost estimate assumptions
- Assumptions are realistic and used consistently

Cost Drivers and Estimate Maturity

- Design, fabricate, procure, and install PIP2IT CDS components
- Cryogenic plant contract oversight, cryogenic plant and associated auxiliary systems installation and commissioning
- Design, fabricate, procure, and install PIP-II CDS components
- Cost drivers identified

‡ Fermilab

Charge #2

P6 Base Costs = BOE + Overheads + Escalation

We understand our funding demands

‡ Fermilab

Fermilab

Charge #2

Labor Profile

Labor profile is consistent with WBS121.11.3 scope needs and can be supported

Risk

Two high risks associated with Cryogenic System are documented in the Risk Register

- 1. Pulsed and CW cryomodule operating modes cause cryogenic or mechanical instabilities
- 2. Insufficient Cryogenic system vendor manufacturing capacity and priority

Title	Probability	Probability Score			Impact Score - Cost	Impact Score - Schedul	Risk Rank
Pulsed and CW cryomodule operating modes cause cryogenic or mechanical instabilities	50.00%	4 (H)	688	3.3	2 (M)	3 (H)	3 (High)
Insufficient Cryogenic system vendor manufacturing capacity and priority	50.00%	4 (H)	500	3.5	2 (M)	3 (H)	3 (High)

Risks associated with delay of the Cryogenic Plant delivery is included in **the PIP-II Project Risk** section of the Risk Register – see presentation by S. Mishra

‡Fermilab

Schedule

	Activity ID Activity Name																												
	[-	121.3	.11 L	inac	- CF	RYO	genio	cs ((CRY	0)																		
		-	121	.3.11.1	1 Lin	ac -	CRY	'0 - F	PIP2I	IT Ci	ryo D)istr	ibuti	on S	iyste	em (CDS)											
			= 1	121.3.1	11.1.1	Lir	nac -	CRY	'0 - I	PIP2	ITCD	S: T	4 Mil	esto	ones	;													
					2941	_							Cav	TL - F	R&DF	h: T4	4 MS	- CD	S ins	stallat	tion o	:omp	leted	in Pl	P2IT				
		Ξ.																											
			121.3.11.2.1 Linac - CRYO - PIP-IICryoP: T4 Milestones																										
	A17294170 Linac - CRYO - PIP-IICryoP - ConstrPh: T4 MS - CryoPlant commissioned 121.3.11.3 Linac - CRYO - PIP-II Cryo Distribution System (CDS)																												
		-								_						m (C	US)												
				121.3.1														one	Deed			tellet	ia a la	DID	11 T.u.a	un al			
				A1/	2942			c - C	κτυ			15-0	.onsi			13 - H	1P-II			ју го	r ins			PIP-	ii iun				
2017			2018		<u> </u>		019 2020						2021 2						2022			2023			202				
Q1 Q2 Q3	3 Q4	Q1 (Q2 Q3	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
			1	<u></u>				;	+ +		÷+				1	+			;- ;- ;-				+						
				ΙT.																									
			++++	++++																						7			
											÷,																		
																							¥						
																							•						
33	10/10	/17	Chak	ravar	tv/Kle	əbar	ner l	WBS	S 12	1.3.	11 3	SC A	ccel	erat	ion M	And	ILDO	and	Crvc	naph	ice			1	1-1				

Summary

- Cryogenic system technical scope is defined
- Functional performance requirements and key interfaces are identified
- Strategy and technical solutions to support wide range of cryogenic load is developed
- WBS 121.3.11 design is sufficiently developed and is supported for the current state of the project
- CDS and Cryoplant are being designed as a single system with safety considerations in the design phase
- Cost and schedule are understood
- Detailed budget and schedule, in P6, are structured to achieve the technical scope
- Qualified project team is in place both at FNAL and BARC

We are ready for CD-1

Thank you!

