
Access to tracking data products via “proxies”
An introduction.

Gianluca Petrillo

Fermi National Accelerator Laboratory

LArSoft Coordination Meeting, October 10th, 2017

LAr
SoftSoftSoft

G. Petrillo (FNAL) Proxies for data products LArSoft coord, Oct 10th , 2017 1 / 7

Tracking data products

Track reconstruction and fitting produces several data products, e.g.:

Track [#0]

positions: vector<Point_t> [N
0
]

momenta: vector<Vector_t> [N
0
]

flags: vector<Flags_t> [N
0
]

...

vector<recob::Track>

Track [#1]

positions: vector<Point_t> [N
1
]

momenta: vector<Vector_t> [N
1
]

flags: vector<Flags_t> [N
1
]

...

[N
T
]

vector<vector<TrackHitFitInfo>>

[N
T
]

vector<TrackHitFitInfo> [#0] [N
0
]

vector<TrackHitFitInfo> [#1] [N
1
]

Track [#0] hit

Track [#0] hit

Track [#0] hit

Track [#1] hit

Track [#1] hit

Assns<recob::Track, Hit>

[∑
k
N

k
]

[N
0
]

[N
1
]

recob::Track trajectory points (flagged), length, ...
recob::Hit (associated) one hit per trajectory point
recob::TrackFitHitInfo (parallel) point-by-point fit information

G. Petrillo (FNAL) Proxies for data products LArSoft coord, Oct 10th , 2017 2 / 7

Track proxy

A track proxy object (denoted with proxy::Tracks) can navigate
through these connections:

1 create a proxy object “merging” the information needed; e.g.:

#include "lardata/RecoBaseProxy/Track.h"
// ...
auto const tracks = proxy::getCollection<proxy::Tracks>

(event, "pandoranu", proxy::withFitHitInfo());

(hit information is always merged in the proxy)
2 use its interface to get access to the merged information

auto const track = tracks[0]; // random access to tracks
double const length = track.track().Length(); // access recob::Track
auto const firstPoint = track.point(0); // random access to point:
art::Ptr<recob::Hit> const& firstHit = firstPoint.hitPtr();
double const firstHitMeas = firstPoint.fitInfoPtr()->hitMeas();

(access to recob::Track members can happen also directly via
operator->(): double const length = track->Length();)

G. Petrillo (FNAL) Proxies for data products LArSoft coord, Oct 10th , 2017 3 / 7

Track proxy magics

The collection proxy called proxy::Tracks has specialised
access to associated hits (implicitly merged)

access to trajectory points (integrated)

access to fit information (requesting proxy::withFitHitInfo())

Merging other information is possible, but only the common proxy
interface is offered. For example, assuming starting vertices are
associated to tracks:

auto const tracks = proxy::getCollection<proxy::Tracks>(
event, art::InputTag("pandoranu"),
proxy::withFitHitInfo(), proxy::withAssociated<recob::Vertex>()
);

// ...
auto const track = tracks[0];
auto const vertices = track.get<recob::Vertex>();
recob::Vertex const* vertex
= vertices.empty()? nullptr: *(vertices.first());

(a different input tag may be specified for each merged component)

G. Petrillo (FNAL) Proxies for data products LArSoft coord, Oct 10th , 2017 4 / 7

Type of supported data product structures

Currently, proxies support only a single data product as main collection
(e.g. a recob::Track collection).

Also, proxies support merging of only two models of data products:
in-order associations where associated objects (e.g. hits) are stored

so that the ones associated to the first main object (e.g.
track) come first, then all the ones associated to the
second one, and so forth

parallel data collections whose the first object (e.g. vector of track hit
fit information) is connected to the first main object (e.g.
track), the second object to the second main object, and
so forth, with no holes allowed

LArSoft recommends to use one of these models as often as possible.

G. Petrillo (FNAL) Proxies for data products LArSoft coord, Oct 10th , 2017 5 / 7

How to use the track proxy

Documentation is available in Doxygen format:
each proxy is documented in a Doxygen “module”
the module for tracking proxy points to proxy::Tracks

start from the proxy::Tracks page, with usage examples and
documentation of single track and single track point proxy

the generic proxy interface is also documented via examples
using a proxy object as function argument needs templates;
quirks like this are also documented in Doxygen

Need help? ask away!
Documentation written by the authors is seldom satisfactory to the
users.

G. Petrillo (FNAL) Proxies for data products LArSoft coord, Oct 10th , 2017 6 / 7

http://nusoft.fnal.gov/larsoft/doxsvn/html/modules.html
http://nusoft.fnal.gov/larsoft/doxsvn/html/group__LArSoftProxies.html
http://nusoft.fnal.gov/larsoft/doxsvn/html/group__LArSoftProxyTracks.html#details
http://nusoft.fnal.gov/larsoft/doxsvn/html/structproxy_1_1Tracks.html#details
http://nusoft.fnal.gov/larsoft/doxsvn/html/group__LArSoftProxyCustom.html
http://nusoft.fnal.gov/larsoft/doxsvn/html/group__LArSoftProxyCustom.html#LArSoftProxyQuirks
mailto:larsoft@fnal.gov

Summary

we have a new “collection proxy” infrastructure in place
– extensible (new data products require no special support)
– customisable (proxy::Tracks is in fact a customisation)
– usability will be tested on you!

documentation is in Doxygen (this talk is no documentation!)
comments and suggestions are welcome
the first proxy being introduced in LArSoft is about tracking

– no LArSoft code has been updated to use it yet

more may follow (e.g. space point with charge is a possible idea)

G. Petrillo (FNAL) Proxies for data products LArSoft coord, Oct 10th , 2017 7 / 7

http://nusoft.fnal.gov/larsoft/doxsvn/html/modules.html

	Tracking data products

