
BackTracking Overhaul in
LArSoft

J. Stock & J. Reichenbacher
South Dakota School of Mines and Technology.

The BackTracker and PhotonBackTracker.
BackTracker

● Rebuild is run whenever the BackTracker
or PhotonBackTracker is configured.

● The method of data return from
BackTracker functions is extremely
inconsistent.

● BackTracker functions names are often
incorrect or misleading. (ID and IDE are
regularly conflated in the current naming).

● Extra modules are required to run the
backtracker at the right time if it can’t run
correctly at the start of an event. User
feedback leads me to believe this usage
model is confusing and difficult for end
users.

PhotonBackTracker

● The PhotonBackTracker follows the
BackTracker model as closely as possible,
and so has all of the same limitations and
issues.

● The PhotonBackTracker competes for
resources with that BackTracker, causing
undefined behavior with the ParticleLists
from an event.

● In the PhotonSimulation, important physics
is done during the detsim stage, which the
PhotonBackTracker is blind to.

● The current model for the
PhotonBackTracker does not know that
multiple optical channels exist per
detector.

Rebuild.
BackTracker

● The rebuild stage causes a try/catch for
every event during the generation stage,
and the LArG4 stage.

○ This TryCatch also has an output to the log
for every event.

● The rebuild stage causes unnecessary
memory usage by recalling data product
from the event regardless of whether or
not they are used.

● The Rebuild Stage of BackTracker calls
the particle list from the event, and then
defines an EveIdCalculator to use with that
list.

PhotonBackTracker

● The rebuild stage causes a try/catch for
every event during the generation stage,
and the LArG4 stage.

○ This TryCatch also has an output to the log
for every event.

● The rebuild stage causes unnecessary
memory usage by recalling data product
from the event regardless of whether or
not they are used.

● The Rebuild Stage of BackTracker calls
the particle list from the event, and then
defines an EveIdCalculator to use with that
list.

Because both services define the EveIdCalculator for the event’s ParticleList, whichever happens to be
initialized second will be the EveIdCalculator used. This is an undefined behavior.

The ParticleInventory service.
● One service to handle all ParticleLists for

backtracking purposes.
● One service to handle the bulk of the

rebuild phase, reducing duplication of
effort between the BackTracker and
PhotonBackTracker, and eliminating it for
the ParticleLists.

● Lazy Rebuilding can be implemented, to
prevent unnecessary rebuild steps from
being run, and eliminating many
predictable and unnecessary log warnings.

All functions that are being factored out of the
backtracker will have copies in the BackTracker
calling the new service, and printing a log
warning instructing the user to make the call
from the new service instead. This functionality
can be left in LArSoft as long as needed for all
users to update their code to the new service,
reducing the impact of these breaking changes.

The particle inventory service does not require any
experiment specific configuration. It can be easily and
quickly added by each experiment to their configured
services as a copy of the standard service.

Inconsistent Functions and incorrect names.
void ChannelToTrackIDEs
(std::vector<sim::TrackIDE>& trackIDEs, …)

std::vector<sim::IDE> TrackIDToSimIDE(int
const& id)

const simb:MCParticle* TrackIDToParticle(int
const& id) const

std::vector<sim::TrackIDE> HitToTrackID(...)

As the examples to the left show, there is no
real consistent form to how the various
backtracker functions return information to the
user.

The last example shows a more significant
issue, where the name of the function clearly
implies one output, while the function actually
returns something quite different.

I propose making all functions as they currently stand available to the user, and making new functions
using the name FunctionPtr and FunctionCp to explicitly pass the requested object either as pointers
(art::Ptrs where possible, c pointers where not) or as copies, allowing the user to determine the best
method for their specific use case.
Some object must be passed as copies because they do not exist in the data products themselves
(TrackIDEs are one such case), though there are very few such cases.

Each of these issues is similarly found in
the PhotonBackTracker, and the

solutions recommended are the same.

The PhotonBackTracker is blind to DetSim.

PhotonBackTracker information is stored as

Int (op det #) , vector<pair<double (time) ,
vector<SDP (TrackID, nPhotons, energy, xpos,
ypos, zpos) > > >

This is based on the SimChannels objects, to
allow as much consistency between the
modules as possible. For the DUNE use case,
we need to be able to store channel specific
backtracking information as well. This would be
added to the event during detsim.

The current data product
(OpDetBackTrackerRecords) can be expanded
to allow for storing channel specific information
(We anticipate minimal user impact as the
PhotonBackTracker currently has limited
adoption outside of DUNE PD-Sim/Reco).

A new data product can be made to track how
signals are detected by individual channels in
parallel with the OpDetBackTrackerRecords.
(Requires a OneToMany art::Assn between the
new records and the existing records.

Status
A ParticleInventory service is ready to
implement. It is just waiting on the updates to
the BackTracker and Photon BackTracker so
that I may begin rigorous CI testing.

BackTracker updates are over 50% completed.

PhotonBackTracker updates will hopefully begin
this week.

I am trying to finish all updates to the
BackTracking software this month, so that I will
be here for the first couple weeks of use to
assist with any issues that may arise.

Questions?

