2018 JINA-CEE Frontiers in Nuclear Astrophysics

Contribution ID: 1 Type: contributed talk

Studies of $7Li(\alpha, \gamma)$ 11B at v-process energies

Wednesday, 23 May 2018 14:30 (15 minutes)

At the end of its life, a massive star can collapse into a proto-neutron star leading to a supernovae explosion. The neutrino flux released during the collapse and the explosion is so significant that the probability of a neutrino interacting with a nucleus can actually influence the nucleosynthesis, the so-called v-process.

The v-process is believed to explain the origins of light element, especially the one of ^{11}B , which is not fully understood. It has been proposed as a candidate for its production in core collapse supernovae. Neutrino triggered reaction lead to the production of (^11)B via the reaction $^7Li(,)^{11}B$.

The cross section of ${}^{7}Li(,){}^{11}B$ is then critical to estimate the contribution of the v-process to ${}^{11}B$ abundance, constraining at the same time the v-process. This reaction was recently studied at Notre Dame in the range of energy relevant to the v-process and the result of this experiment will be presented.

Primary author: Ms GILARDY, Gwenaelle (Notre dame University)

Co-authors: Mr SEYMOUR, Christopher (Notre Dame University); Dr LAMERE, Edward (University of Massachusset Lowell); Dr GORRES, Joachim (Notre Dame University); Mr HOWARD, Kevin (Notre Dame University); Dr MACON, Kevin (Notre Dame University); Prof. COUDER, Manoel (Notre Dame University); Mr SKUL-SKY, Michael (Notre Dame University); Prof. WIESCHER, Michael (Notre Dame University); Dr DEBOER, Richard (Notre Dame University)

Presenter: Ms GILARDY, Gwenaelle (Notre dame University)

Session Classification: Session M3