2018 JINA-CEE Frontiers in Nuclear Astrophysics Contribution ID: 14 Type: poster ## Use of (3He,n) Indirect Measurements to Study H and He burning reactions in Type-1 X-Ray Bursts Wednesday, 23 May 2018 16:30 (1h 30m) The reaction rate of the 59 Cu(p, γ) 60 Zn has been identified to have a significant impact on the light curve of X-ray bursts, controlling the reaction flow out of the Ni-Cu cycle impacting the late-time light curve. The 58 Ni(3 He,n) 60 Zn indirect measurement can be used to study the 59 Cu(p, γ) 60 Zn reaction. We are using the neutron evaporation spectrum from 58 Ni(3 He,n) 60 Zn in order to extract the level density of 60 Zn and constrain the 59 Cu(p, γ) 60 Zn reaction rate. To augment the (3 He,n) technique for lower level-density compound nuclides, a silicon detector array is being developed for use in determining charged-particle decay branching ratios from discrete states. The present status of data analysis and detector development will be discussed, as well as the future plans. Primary author: SOLTESZ, Doug (Ohio University) Co-authors: Dr VOINOV, Alexander (Ohio University); Dr MASSEY, Tom (Ohio University); Dr MEISEL, Zachary (Ohio University) **Presenter:** SOLTESZ, Doug (Ohio University) Session Classification: Poster Session