Speaker
Sebastian Aguilar
(University of Notre Dame)
Description
Overcoming the mass A = 5 and A = 8 gaps are important for understanding nucleosynthesis processes. This typically requires a 3-body reaction, which are the bottlenecks for light element formation. The $^{8}$Li($\alpha$,n)$^{11}$B reaction is potentially important for light-element nucleosynthesis as it provides an alternate pathway for overcoming the A = 5 and A = 8 mass gaps. Measurements of its cross-section have proven a challenge as there has been a persistent disagreement in its value. It is important to perform an independent measurement to resolve this discrepancy. The Active Target-Time Projection Chamber (AT-TPC) uses the target gas as a tracking medium providing detailed information for charged particle tracks and reaction cross-sections. In particular, a high efficiency, large angular coverage, vertex reconstruction, as well as precise angle and energy measurements can be obtained. Preliminary calculations have been performed using LISE++ providing an estimate on the secondary beam rate for $^{8}$Li. The beam production and plans for a measurement that can potentially resolve the past experimental discrepancies will be presented.
Primary author
Sebastian Aguilar
(University of Notre Dame)
Co-author
Tan Ahn
(University of Notre Dame)