2018 JINA-CEE Frontiers in Nuclear Astrophysics

Contribution ID: 11 Type: poster

Investigating and reducing the impact of nuclear reaction rate uncertainties on ⁴⁴Ti production in core-collapse supernovae

Wednesday, 23 May 2018 16:30 (1h 30m)

Recent observational advances have enabled high resolution mapping of 44 Ti in core-collapse supernova (CCSN) remnants. Comparisons between observations and 3D models provide stringent constraints on the CCSN mechanism. However, recent work has identified several uncertain nuclear reaction rates that influence 44 Ti production in model calculations. We use MESA (Modules for Experiments in Stellar Astrophysics) as a tool to investigate the previously identified sensitivities of 44 Ti production in CCSN to varied reaction rates. MESA is a code for modeling stellar evolution and stellar explosions in one-dimension. We will present the preliminary simulation and sensitivity study results, and our plans to reduce or remove the most significant uncertainties from (α, \mathbf{n}) , (α, \mathbf{p}) , (α, γ) , (\mathbf{p}, \mathbf{n}) and (\mathbf{p}, γ) reaction rates using direct and indirect measurement techniques at the Edwards Accelerator Lab at Ohio University.

Primary author: Mr SUBEDI, Shiv (Ohio University)

Co-author: Dr MEISEL, Zach (Ohio University)

Presenter: Mr SUBEDI, Shiv (Ohio University)

Session Classification: Poster Session