CMS Test Beams

Lorenzo Uplegger

Fermilab Test Beam Committee Meeting

November 3 2017
Fermilab at CMS and CMS at Fermilab

- FNAL at CMS is researching on 3 out of 5 science drivers identified by P5
- FNAL is the largest group in US and 2nd largest in CMS
 - more than 100 people active at Fermilab
 - host lab for CMS Operations and Upgrades
 - Joel Butler current CMS spoke-person
- FNAL personnel are active in: data analysis, operations, Phase 1 upgrades, Phase 2 upgrades, computing (Host of US Tier-1, largest of all T1s)
- **FNAL is essential to the success of CMS (and thus of Fermilab and CERN)**
- commitment to support test beams for the Phase 2 upgrades
Upgrade Schedule

LHC / HL-LHC Plan

2017 Phase1 HL-LHC

Pile-up ~30

Pile-up ~60

Pile-up ~200
Phase 2 Upgrades of the CMS Detector

Trigger/HLT/DAQ
- Track information at L1-Trigger
- L1-Trigger: 12.5 μs latency - output 750 kHz
- HLT output =7.5 kHz

Barrel EM calorimeter
- Replace FE/BE electronics
- Lower operating temperature (8 °C)

Muon systems
- Replace DT & CSC FE/BE electronics
- Complete RPC coverage in region $1.5 < \eta < 2.4$
- Muon tagging $2.4 < \eta < 3$

Replace Endcap Calorimeters
- Rad. tolerant - high granularity
- 3D capability

Replace Tracker
- Rad. tolerant - high granularity - significantly less material
- 40 MHz selective readout (Pt≥2 GeV) in Outer Tracker for L1-Trigger
- Extend coverage to $\eta \sim 4$ (TPIX)

+ Novel Timing Detector
HL-LHC Requirements

• At 3 cm from the interaction point the radiation fluence of 2×10^{16} neq/cm2!
• Today’s pixel sensor technology cannot survive these conditions
• All detectors will be exposed to very high radiation environment
T-992 Experiment at Fermilab

- Our goal is to test the next generation prototypes for the HL-LHC upgrade before and after irradiation to compare the performances and understand if we have a technology capable of withstanding the enormous fluences.

- Big global effort on Sensor R&D for the HL-LHC
 - RD42 (diamond)
 - 3D consortium (3D sensors)
 - ATLAS, CMS and LHCb

- Test beams are essential to study the characteristics of sensors after irradiation, measuring efficiencies and charge collection to make sure that the newly designed structures behave as expected

- It is also important to test in real beam conditions the new Read Out Chips (ROCs) designed for these new sensors

- CMS Pixel and Outer Tracker Phase II are just two of the main participants of this challenging R&D effort
The Pixel detector

- Over the past 4 years different sensors technologies have been investigated:
 - 3D Silicon sensors
 - Diamond
 - Thin silicon

- The FTBF telescope is an essential tool with bandwidth and resolution and efficiency that are not matched in any test beam around the world

- The 120 GeV bunched proton beam offers a unique opportunity to test the timing of the ROCs and the sensor’s resolution with little multiple scattering allowing to resolve precisely design structures at the level of few µm

- Pixel collaborators are coming at least twice a year to test their sensors and ROCs before and after irradiation

- Sensors are tested after production. They are then irradiated to very high doses and then retested again

- Uniqueness of the facility demonstrated by having achieved reliable results over the course of the years

- Many published papers helped the whole pixel sensor R&D community to narrow down the winning technologies to build the next generation of pixel detectors!
The Outer Tracker (1)

• New >200 m² silicon outer tracker essential to the success of the HL-LHC
• USCMS will build > 4000 modules (30% of the outer tracker)
• Many places to do test beams, but FTBF is the best instrumented and supported
• 3-4 test beams in 2016 and 2017
• TDR results for pixel-strip module R&D are exclusively from FTBF (TDR needed to get the LHCC approval of Outer Tracker)
• An excellent match to the US CMS leadership role in pixel-strip module development
• European CMS colleagues realize the value of FTBF and are coming here for their tests
The Outer Tracker (2)

- **Devices for tests in remaining months of 2017**
 - minimodule (US CMS test beam)
 - 2S full size module (official CMS test beam - 8 colleagues from Europe)
 - 2018-2019 are critical for the OT: pre-production components are coming in and we need to make every effort to verify the design with real particle in real beam
 - Lot of ambitious design features: FE ASIC inter-communication, hit pair reconstruction @40 MHz, 10Gbps DAQ, etc
 - Some are the core of the US contribution to the OT, i.e. Macro-Pixel-Sub-Assembly (MaPSA) and OTSDAQ

- **Devices for tests in 2018**
 - First SSA and MaPSA tests with beams
 - First Pixel-Strip mini-module prototype validating inter-ASIC communication and stub formation
 - Pixel-Strip pre-production modules
 - Strip-Strip pre-production modules

- No available test beam slots at CERN in the next few months so results of the upcoming FTBF test beam for OT are a crucial validation of the design of the new ROC that will be tested for the first time in a beam here!
The High Granularity Calorimeter

- Novel calorimeter in the forward region capable of imaging jets
 - essential to cope with unprecedented level of pile expected at HL-LHC
- FNAL will assemble 360 cassettes, each containing ~40 8” silicon modules
- **US CMS responsible for module and cassette production**
- **It is critical for the US to carry out test beams of the prototypes**
- In 2016, 4 weeks of test beam
 - test of the 1st HGCAL modules
- New campaigns expected in 2018
 - 3 generations of front end chip expected, all must be tested
The Timing Detector

- Adding the 4th dimension to CMS, measuring the timing of particles’ arrival allows to further suppress the pile up
- FNAL is leading the R&D of the LGAD silicon sensors and readout ASICs for the End-cap timing detector
- Collaborative effort between CMS and ATLAS institutions
- Test beam campaign in May 2017: **ATLAS+CMS**
 - Close collaboration with Hamamatsu, CNM, FBK
 - Publication submitted to NIM A
 - Thanks to unique pixel telescope in the FTBF, for the first time we looked at the behavior between pixels
 - Quantified the size of the dead area, sensors uniformity, working on the next generation with manufacturers
The Timing Detector

- FTBF has been a critical facility for timing detectors
- > 10 publications on timing R&D in the last 3 years

Testbeam in Winter 2017
- **Barrel Timing detector: SiPM+LYSO**
 - University of Virginia, Caltech, Notre Dame, Princeton, Northeastern

Endcap Timing Detector: LGAD silicon sensors
- FNAL, Caltech, UC Santa Barbara, University of Helsinki, University of Torino

TDR preparation in 2018
- 2 more test beams already scheduled in 2018
- FNAL plays a leading role in sensor and ASIC development: more test beams will be needed in the coming years!
Summary

• CMS will be upgraded in preparation for the HL-LHC

• The FTBF facility is CRITICAL for the success of CMS, Fermilab, CERN
 • As a support facility for the high priority Fermilab projects (Outer Tracker, HGCAL, Timing)
 • As a user support facility for US CMS (Fermilab is the host lab for US CMS, CERN relies heavily on Fermilab for the successful completion of the US CMS project)
 • As a user facility for the International CMS

• Important: CERN won’t have beam in 2019-2020, exactly when the Phase 2 projects are transitioning from prototyping to production
 • Unique opportunity for Fermilab as the US national lab for particle physics to continue to lead in the next years
Collaborators

• Pixels
 INFN Milan, INFN Torino, INFN Firenze, INFN Lecce, Purdue University, Cornell
 University, University of Colorado, The University of Tennessee

• Outer tracker
 Fermilab, UCSD, DESY, Louvain, Bristol, IC London, Vrije Universiteit Brussel, CERN,
 Rutgers, Brown, Rochester

• HGCAL
 University of Minnesota, Northwestern University, Texas Tech University, CMU

• Timing
 UC Santa Cruz, University of Kansas, Caltech, FNAL, Northeastern University,
 University of Torino, UC Santa Barbara, University of Helsinki, Princeton