Laboratory Portrait: TUNL

I

at CHAPEL HILL

LECM, August 11, 2018

Laboratory Protrait: TUNL

at CHAPEL HILL

NC Central University Joins TUNL – Jan. 29, 2018

I

NORTH CAROLINA CENTRAL UNIVERSITY

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

LECM, August 11, 2018

TUNL Code of Conduct

The American Physical Society (APS), in its <u>Policy on Equal Professional Opportunity</u> encourages the enactment of comparable policies at home institutions and workplaces. Thus, the Triangle Universities Nuclear Laboratory (TUNL) adopts the basic principles endorsed by the APS as detailed below.

Principles

As part of its goal of advancement and diffusion of the knowledge of nuclear physics, the Triangle Universities Nuclear Laboratory (TUNL) affirms a policy of equal opportunity for all who work at the laboratory. This policy requires that all members of TUNL as well as all visitors conduct their professional activities without discrimination or harassment in regard to personal factors irrelevant to the purposes of the laboratory, including (but not limited to) gender, gender identity, race, national origin, age, religion, marital status, political views, sexual orientation, or disability. Because respect for individuals is integral to achieving this goal, it is the policy of TUNL that harassment of colleagues and co-workers in the professional environment, including sexual or racial harassment, is unacceptable behavior.

Professional Conduct

TUNL endorses the <u>APS Guidelines for Professional Conduct</u>. All TUNL personnel and all visiting researchers should be familiar with these guidelines.

Guidelines for Authorship

1

All collaborations at TUNL independent of size must follow the <u>authorship guidelines</u> of the APS. Details specific to research at TUNL are described in a separate <u>policy</u>.

AROLINA

2008-present: 66 PhDs

(about 8% of PhDs in experimental nuclear physics nationwide)

North Carolina Central Universit

ן זין

Total Funding: FY'15 – FY'17 (k\$)

at CHAPEL HILL

Research Program

- (Low-energy) QCD
 (NCCU, Duke, UNC, NCSU)
- Nuclear Structure and Reactions (UNC, Duke)
- Nuclear Astrophysics (UNC, NCSU)
- Fundamental Symmetries (NCSU, UNC, NCCU, Duke)
- Neutrino Physics (UNC, Duke, NCSU, NCCU)
- Nuclear Data (NCSU, Duke)
- Applied

(Duke, UNC, NCSU, NCCU)

NC STATE

UNIVERSITY

UNIVERSITY

at CHAPEL HILL

Electric and magnetic dipole polarizabilities:

Bridging the gap between nuclear phenomenology and quark-gluon structure via Compton scattering

Duke Graduate student Xiaqing Li

NIVERSI

Compton Scattering Measurements

Few-Nucleon Systems

North Carolina Central University

NC STATE

UNIVERSITY

³He(γ, pd)⁻ 90 Photodisintegration of ³He and ³H at HI γ S 12000 $E_v = 15 \text{ MeV}$ 80 E_{cp} (ADC channel) $\begin{array}{l} \theta_{d}=\theta_{p}=90^{\circ}\\ \Delta\varphi_{dp}=180^{\circ} \end{array}$ n-d breakup in tandem lab 10000 70 8000 6000 2000 2000 4000 6000 8000 10000 12000 14000 ³H(γ,nn)p E_{co} (ADC channel) Calculations by H. Witała ³He(γ, np)p E., = 15 MeV $E_{\gamma} = 15 \text{ MeV}$ $\theta_n = \theta_n = 95^\circ$ θ_{n1}=88.8°, θ_{n2}=81.5°, σ(μb/sr²MeV) Δφ_{np} = 180° $\Delta \phi = 0^{\circ}$ En (MeV) $a_{nn} = -19 \text{ fm}$ np FSI $a_{nn} = -17 \text{ fm}$ 30 $\Delta\sigma/\sigma$ 9.3% fm Δa_{nn} 1.0 1.5 2.0 2.5 3.0 0.5 E_n (MeV) 10000 12000 14000 2000

THE UNIVERSITY

at CHAPEL HILL

of NORTH CAROLINA

4000 6000 8000 E_p (ADC channel)

100

4.0

3.5

HI_yS2 Concept

Fabry-Pérot laser cavity: $E_{\gamma} = 2 - 20 \text{ MeV}$ Increase in total flux by factor of 500 – 167 (larger increase in flux on target, e.g. gain of 1,600 - 5,000 at $E_{\gamma} = 2.56 \text{ MeV}, \Delta E/E = 5\%$) Estimated cost: \$7 M

Research Highlights – Nuclear Structure

North Carolina Central University

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

LECM, August 11, 2018

Nuclear Structure at HI γ S: Shape Coexistence in Ni

TUNL

- Shape Coexistence is present in Ni with N = 38, 40, 42
- The 0_3^+ prolate state is understood as dominated by a proton excitation
 - \rightarrow it could/should be present in ⁶⁴Ni
 - \rightarrow test effective interactions at stability

Nuclear Structure at HI γ S: Shape Coexistence in Ni

GRETINA & CHICO-2

7.5 8.8 9.0 7.8 8.1 8.4 8.6 Photon Energy (MeV)

Current γ^3 setup

UNIVERSITY THE of NORTH CAROLINA at CHAPEL HILL

Ĩ

UNIVERSITY

1. <u>Multi-phonon states & coupling to rotational states</u>

2. The E1 Pygmy Dipole Resonance

3. The M1 Spin-Flip Mode

Research Highlights – Nuclear Astrophysics

LENA 240-keV ECR accelerator

H⁺ beam on target: ~ 5.2 mA @ 200 keV

Magnet upgrade planned, late 2018

III

https://m.phys.org/news/2018-08-renovations-big-nuclear-astrophysics-lab.html

See:

Central Iniversit

LECM, August 11, 2018

Enge split-pole spectrometer

TUN

nEDM is moving from R&D phase to construction

- Goal is to measure the neutron EDM with a sensitivity of $d_n < 5 \times 10^{-28} \text{ e-cm}$ (90%)
- Seeks to discover a new source of CP-Violation
- Would be a dramatic signal of new physics
- Potentially provides a key piece to a major cosmological puzzle why we live in a matter-dominate universe.

NEUTRON BEAM

Based at the SNS at ORNL, with ~20 collaborating

institutions across the U.S. and Canada.

NIVERSIT

Cryovessel Arrival at Caltech

III

North Carolina Central Universit THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

LECM, August 11, 2018

nEDM at TUNL/PULSTAR

Systematic study apparatus:

- Neutron and ³He motional correlation functions
- Measurements of the neutron-to-³He gyromagnetic ratio
- Development of the precise simultaneous manipulation of neutrons and ³He spins with AC fields
- Studies of the critical spin-dressing and spin-dressing modulation techniques
- Studies of the pseudomagnetic field that is aligned with the ³He spins and generated by the spin-dependent n-³He scattering length
- General measurement cell characterization

Neutron β -decay

2015

Lifetime of the neutron from UCN τ^* R. W. Pattie Jr. et al. Science 2018;360:627-632 UCN • Beam 895 Mampe et al. $\tau = 877.7 \pm 0.7_{stat} + 0.4/-0.2_{sys} s$ Lifetime [s] Yue et al. Nico et al. 890 Byrne et al. Mampe **6** T Polarizing Magnet et al. Steyerl et al. 885 Arzumanov | et al. Neutron 880 Spin Flipper **UCN Source** PDG 2013: 880.0 ± 0.9 s Pichlmaier Serebrov et al. et al. 875 1 me Upstream Normalization Monitor 1990 1995 2000 2005 2010 Year of Publication **UCNA** Also: Nab *based at LANL with 12 collaborating institutions **NIST** interferometry North Carolina Central Universit THE UNIVERSITY NC STATE TH CAROLINA LECM, August 11, 2018 UNIVERSITY

at CHAPEL HILL

UCNτ

Highlights - Neutrinos

First observation of coherent elastic neutrino-nucleus scattering!

Located at the SNS, ORNL, 21 collaborating institutions

NORTH Carolina

Central Jniversit

UNIVERSITY ROLINA at CHAPEL HILL

Other Results from the COHERENT Collaboration

NC STATE

UNIVERSITY

I

UNIVERSITY

of NORTH CAROLINA

at CHAPEL HILL

North Carolina Central University

C.E. Aalseth et al. (Majorana Collaboration), Phys. Rev. Lett. 120, 132502 (2018)

Discovery Potential

TUNL

at CHAPEL HILL

LEGEND

First Stage:

- (up to) 200 kg ⁷⁶Ge in upgrade of existing infrastructure at LNGS
- BG goal: 0.6 cts/(FWHM t yr)
- Data start ~2021
- Will use Majorana & GERDA detectors
- Proposal submitted to LNGS in March 2018
- Funding for 130 of the 200 kg in place.

Subsequent Stages:

- 1000 kg ⁷⁶Ge (staged)
- Timeline coordinated with
 first Stage
- BG goal: 0.1 cts/(FWHM t yr)
- Location tbd
- Required depth (Ge-77m)
 under investigation

Summary

Synergistic use of accelerators and non-accelerator techniques to tackle complex problems (a flexible, highly-trained workforce in service of society)

1