FRIB UPGRADE: ADVANTAGES FOR r-PROCESS STUDIES

LA-UR-18-27611

MATTHEW MUMPOWER Los Alamos National Lab

FRIB Upgrade Workshop Thurs. Aug. 9th 2018

THE PROBLEM

We want to describe the abundances observed in nature

But there is uncertainty in:

The astrophysical conditions

The nuclear physics inputs

Both are required to model the nucleosynthesis

INPUTS FROM NUCLEAR PHYSICS

1st order: masses, β-decay rates, reaction rates & branching ratios

See review paper: **Mumpower** *et al.* PPNP 86 (2016)

The chart of nuclides

All half-lives

Neutron capture rates

Nuclear masses

As of today, to varying degrees of accuracy

WHERE WE'RE GOING

FRIB as the r-process machine

r-PROCESS CALCULATION

nuclear physics inputs

(Sn, β -rates, n-cap rates, ...)

thermodynamic conditions

(temperature, density, ...)

Sprouse & Mumpower in prep (2018)

PRISM: Portable Routines for Integrated nucleoSynthesis Modeling

WHY FOCUS ON MASSES?

Masses go into the calculation of all other relevant quantifies... (2015)

UNCERTAINTIES FROM MASSES

Hot wind: $S \sim 200$, $\tau = 80$ ms, $Y_{p} = 0.3$

Uncorrelated mass Monte Carlo study; not \(\frac{\partite{n}}{\text{UNPPYOF}} \(\frac{\partite{n}}{\text{G}} \) \(\fra

UNCERTAINTIES FROM MASSES

Hot wind: $S \sim 200$, $\tau = 80$ ms, $Y_{p} = 0.3$

Rule of thumb: $\Delta_{mass} \sim 500 \text{ keV} \Rightarrow \Delta_{Y} \sim 2-3 \text{ birdhers of the birth of t$

VARIATION IN MASSES

Large variation in mass model predietions further from Stability 16)

FRIB: Day 1 already allows probing of the total allows probing of the total already allows probing of the total allows

FRIB: Year 2 provides nuclei with several troops the attrophs -126 (2016)

FRIB: Full design spec provides in for the fation out to None 80/84-76 (2016)

Upgrade provides 1 or 2 more nuclei per sort opic chain P.N. So & Mark 2019

MONTE CARLO RESULTS

Uncorrelated mass Monte Carlo study; not full propagation

What is the impact of the FRIB upgråde? Prover CGS16 in press (2018)

MONTE CARLO RESULTS

Reduction in uncertainties in Rare Earth and transfer egions ress (2018)

A TYPICAL r-PROCESS CALCULATION

nuclear physics + astrophysics → abundances (2011)

REVERSE ENGINEERING

What if we take a different approach?

Constrain nuclear physics with experiment and additionally observation using feedback from our calculated abundances

If we try to fit a particular part of the pattern we can ask what nuclear properties are responsible for its formation and learn how they are required to evolve with neutron excess

REVERSE ENGINEERING

Our pursuit must satisfy several constraints:

We must be able to make measurements on these nuclei

Limits us to nuclei closer to stability

So, we must explore the freeze-out phase of the r process

We must be able to use a recognizable signature in the abundances

The rare earth peak

FORMATION OF THE RARE EARTH PEAK

PROPOSED WAYS TO FORM THE REP

- Dynamical formation during freeze-out (R ≤ 1)
 Requires a localized nuclear structure effect (kink)
- 2. Via fission fragment yields

Surman REngth Presodin hip The March of the Bridge of the Bridge of the Salet of th

FORMATION OF REP

Hot wind: $S \sim 200$, T = 80 ms, $Y_e = 0.3$

Kink in separation energies forms peak under hot he bet en energies for energi

FORMATION OF REP

Cold wind: $S \sim 300$, T = 80 ms, $Y_e = 0.4$

REP FORMATION: IDEAL CANDIDATE

We choose to study method 1 for reverse engineering

- Dynamical formation during freeze-out (R ≤ 1)
 Requires a localized nuclear structure (kink)
 Relatively few nuclei to measure, close to stability
 Hints from Jin Wu's T_{1/2} measurements
 Very close to making necessary mass measurements
- 2. Via fission fragment yields Requires dumping heavy products in exactly the right spot Extreme r-process conditions necessary Need to make measurements on hundreds of the heaviest nuclei Problem: We can't reach these nuclei, even with FRIB

THE REVERSE ENGINEERING FRAMEWORK

THE BAYESIAN APPROACH

An example... The Monty Hall problem

A new car is hidden behind one of the doors

The optimal strategy is to switch the initial pick - twice the chance of winning the new car

We update our probabilities based off new information

APPLY IDEA TO REP FORMATION

For fixed astrophysical conditions (hot, cold or merger)...

Let's allow the nuclear masses to vary

We have to update all relevant nuclear physics self-consistently

The rare earth abundances provide **feedback** to the change in masses

Use the Metropolis algorithm to traverse the parameter space

Compute likelihood

L ~ match red abundances

Mumpower *et al.* ApJ 833 282 (2016)

REVERSE ENGINEERING PROCEDURE

How it works in a nutshell

UPDATING NUCLEAR PROPERTIES

Every time the masses change we recalculate...

Relevant Q-values

 β -decay properties ($T_{1/2}$ and branching ratios)

Neutron capture rates

For hundreds of nuclei...

This is computationally expensive but Mecessary! PRC 92 035807 (2015)

RESULTS OF REVERSE ENGINEERING

FIRST ATTEMPT

Hot wind r-process with default DZ parameters

Success?! ... We found a peak!But there's a problem!

L ~ match red abundances wer et al. J. Phys. G 44 3 034003 (2017)

FIRST ATTEMPT

Hot wind r-process with new DZ parameters

Success?! ... We found a peak! But there's a problem!

L ~ match red abundantesower et al. J. Phys. G 44 3 034003 (2017)

DIDN'T MATCH KNOWN MASSES

We need to tell the Metropolis algorithm to match both Update Likelihood function:

L ~ match abundances + match known masses

Mumpower et al. J. Phys. G 44 3 034003 (2017)

RESULTS WITH DZ ALONE

No combination of DZ parameters can **simultaneously** reproduce the rare earth peak and match the known masses at the same time

The nuclear structure information responsible for the rare earth peak is *missing from the model*

We could move to a nuclear model, but these are more complicated to analyze, with many coupled parameters.

The benefit to DZ is that the abundances are flat to start with.

Let's try to add the missing property of the start with the description of the property of the start with the benefit to DZ is that the abundances are flat to start with.

PARAMETERIZE MISSING PHYSICS

$$M(Z, N) = M_{DZ}(Z, N) + a_{N} exp[-(Z-C)^{2}/2f]$$

a_N - Strength of change for given neutron number in MeV

C - Center of the distribution in proton number

f - Rate of fall off back to stability

Now we repeat the Monte Carlo calculations, letting these parameters vary (2016)

RESULTS WITH NEW PARAMETERS

The predicted masses for Z = 60 (Nd)

Distinguishable predictions given different astrophysical conditions

Hot: local min even-N • wider in N • smaller change to masses Cold: local min odd-N • tighter in N • larger change to masses

EVOLUTION OF ABUNDANCES

Before • During • After peak formation

Great success!

Difference is encoded in the astrophysical Mconditions ApJ 833, 282 (2016)

PREDICTED MASSES

For three astrophysical evolutions: hot, cold or merger

The <u>trend</u> in the masses is important for for the the REP 3 034003 (2017)

FIT TO ABUNDANCES

For three astrophysical evolutions: hot, cold or merger

Mumpower et al. J. Phys. G 44 3 034003 (2017)

LATEST RESULTS

Nicole Vassh has made major upgrades to the algorithm

We now use solar data & uncertainties and algorithms algorithms and algorithms are solar data.

LATEST RESULTS

The aglorithm is now ready to be used in matching data

We compared to CARIBU results & Yindependently matching data

We compared to CARIBU results & Yindependently matching data

LATEST RESULTS

FRIB will be able to probe most of relevant regions for REP formation

Only the upgrade will allow the reach of the pole here pole here.

REVERSE ENGINEERING MASSES

What are the consequences of the future measurements?

Either we find the structure... or we don't

If we do: we favor precise conditions for the main r-process

If we don't: we favor extreme conditions that <u>REQUIRE</u> fission recycling... only option is the tidal tails of mergers

Perhaps nature is more complicated than we think... and we learn something even more profound

Make the measurements to find out! J. Phys. G 44 3 034003 (2017)

SUMMARY

Theoretical calculations for the r-process are currently data starved

Current models result in orders of magnitude uncertainty in calculated abundances

FRIB will provide a plethora of new nuclear data

This will be invaluable in bechmarking theoretical models

(in particular, for nuclear masses)

As well as constraining the astrophysical conditions of the r-process

Results at MatthewMumpower.com