
Microboone SAM Metadata Proposal

B. Carls, E. Church, H. Greenlee, M. Kirby, Z. Pavlovic, S. Wolbers

April 26, 2013

Contents

1 SAM Overview 1
1.1 SAM Resources . 2

2 SAM Metadata 2
2.1 SAM Database . 3
2.2 SAM Metadata Workshop . 3
2.3 Predefined Metadata Fields . 3

2.3.1 File Names and File Ids. 3
2.3.2 File Type, File Format, Data Tier 5
2.3.3 Group . 5
2.3.4 File Size and CRC . 5
2.3.5 Application Information . 5
2.3.6 Parentage Information . 7
2.3.7 Data Stream . 7
2.3.8 Run Information . 7

2.4 Experiment-Specific Metadata Fields 7
2.4.1 Beam Status . 8
2.4.2 Detector Status . 8
2.4.3 Trigger Configuration . 9
2.4.4 Additional Online Information 9
2.4.5 FCL Configuration . 9
2.4.6 Project Configuration . 10
2.4.7 Offline Streaming and Filtering 10

1 SAM Overview

Sam is primarily a file catalog of files belonging to a particular experiment. The file
catalog is implemented as a physical database somewhere. Users do not (usually)
interact with the database directly, but rather client programs send requests to an
http(s) server called a samweb server. The samweb server responds to client requests,

1

which responses may include returning information extracted from the database. The
samweb server can also update the sam database.

The samweb server interface supports its own query language (not SQL) for identi-
fying collections of files. Users are allowed to record and name queries permanently in
the sam database. Such a memorized query is called a dataset definition. A samweb
server can be requested to execute a query (whether memorized in the form of a
dataset definition or not) and return a list of files. A samweb server can likewise be
requested to memorize the list of files obtained as a result of a query, which list is
called a snapshot. Finally, a snapshot can be used to define a project, which consists
of a set of files that will be scheduled for delivery to a set of worker jobs.

1.1 SAM Resources

There are several Fermilab redmine sites that contain useful information about sam,
and related products. The Fermilab redmine home page is

https://cdcvs.fnal.gov/redmine.

A full listing or Fermilab redmine projects and subprojects can be found at

https://cdcvs.fnal.gov/redmine/projects.

Specific project redmine pages have urls like

https://cdcvs.fnal.gov/redmine/projects/project-name,

where project-name is the name of a redmine project or subproject. Some redmine
projects that are relevant for sam are as follows.

• sam-main - Main sam project page.

• sam-web - Contains information about metadata and sam query language.

• sam-web-client - Command line and python clients.

• filetransferservice - File transfer service.

• ifdhc - Main page for data handling tools.

• ifdh-art - Art data-handling interface (art sam client).

Note that file transfer service and data handling tools are not part of sam per se, but
the do interact with sam. They are also outside the scope of this document, except
they are listed here for informational purposes.

2 SAM Metadata

Sam associates various kinds of information with files, which information collectively
are called sam metadata. The primary purpose of sam metadata is to be used in con-
structing queries that are part of dataset definitions, and secondarily as a repository
for information that may be of interest for other purposes.

2

2.1 SAM Database

The sam database is designed to have a fixed schema that is the same for every exper-
iment (different experiments will have their own database instances). The sam design
does include a provision for adding experiment-specific metadata (see Sec. 2.4), but
the underlying database schema doesn’t change. The sam database is not a good sub-
stitute for having experiment-specific databases with schemas defined for particular
experiment-specific purposes (such as trigger database, runs database, Monte Carlo
database, etc.).

2.2 SAM Metadata Workshop

A sam metadata workshop was held on Feb. 5, 2013, which was attended by most of
the coauthors of this document. A useful introductory talk was presented by Robert
Illingworth, which can be found on the sam-main redmine documents page.[1]

2.3 Predefined Metadata Fields

A list of predefined metadata fields can be found in Robert Illingworth’s metadata
workshop talk [1], as well as in the sam-web redmine wiki [2]. A list of the most
relevant predefined metadata fields is reproduced in Table 1.

In the following sections, we will give further explanations and suggestions regard-
ing some of the fields listed in Table 1.

2.3.1 File Names and File Ids.

Files in the sam database are uniquely identified by either a file id. (an integer) or a
file name (a string). In database terms, the file id. is the primary key, and the file
name is a unique key. The file name is assigned by the user and can basically be
anything. The file id. is generated and used internally by sam. However, users can
discover the file ids. of files in sam and use them for queries or sam programming.

The sam file name corresponds to the filename part of a unix-like path (i.e. the part
after the final “/”). The sam database does not include any organizational concept
like directories. That is, sam metadata is relational rather than hierarchical in nature.
People sometimes organize files in a directory tree with duplicate file names, where
files are distinguished by being in different directories. This approach does not work
with sam, because the filenames themselves are required to be unique.

People sometimes try to invent file naming conventions such that the file name
effectively encodes lots of information about how the file was produced (making some-
times for very long filenames). Within reason, there is nothing wrong with this
approach (although excessively long file names have been known to cause problems
by exceeding path length limits on some systems), file names should not be used as a
substitute for having proper metadata. It is poor practice to use the file name in sam
queries (if this becomes necessary, that is evidence that the metadata is inadequate).

3

Table 1: Predefined metadata fields.

Name Type Required?
Predefined

Description
Values?

file id integer yes no File id.
file name string yes no File name
file size integer yes no File size in bytes
file type string yes yes File type
file format string no yes File format
data tier string no yes Data tier
group string no yes Group
crc struct no File checksum
crc.crc value no Checksum value
crc.crc type integer yes Checksum type
application struct no Application
application.family string no Application family
application.name string no Application name
application.version string no Application version
parents struct array no no List of parent files
parent.file name string no no Parent file name
parent.file id string no no Parent file id.
event count integer no no Number of events
first event integer no no First event number
last event integer no no Last event number
start time date no no File start time
end time date no no File end time
data stream string no yes Stream
runs struct array no List of runs
run.run number integer no Run number
run.run type string yes Run type

4

Since sam file names are required to be unique, some thought needs to be given in
advance to how this uniqueness will be achieved in practice. Any deterministic algo-
rithm for generating file names has a risk of generating duplicates (e.g. if a particular
job needs to be rerun, etc.). Therefore, it is good practice to include guaranteed-
unique elements in files destined for sam, such as timestamps or job ids.

2.3.2 File Type, File Format, Data Tier

The file format describes the physical format of a file. The file type is used to give
a higher level description of what the file is intended to be used for. The data tier
represents the stage in a typical processing chain.

Likely values for these fields were discussed by the coauthors in the breakout
session of the metadata workshop. Some suggested values are listed in Table 2.

2.3.3 Group

The group field is intended to stand for a group within an experiment, rather than
the whole experiment. For example, the group field could be used by a particular
physics group to label its particular Monte Carlo files. However, initially it will be
sufficient to have one catch-all group for the whole experiment (see Table 2).

2.3.4 File Size and CRC

The file size and crc fields are used by sam and the file transfer service to protect
against data corruption. The terms “crc” and “checksum” mean the same thing, and
are used interchangably in sam documentation. Although sam allows different crc
types, sam and the file transfer service internally use a type of crc called “adler 32

crc type,” and there is no reason to use any other crc type.
Users can choose not to concern themselves with file sizes and crc’s at all, and

leave the setting and checking of these fields to sam and the file transfer service,
which will automatically set or check (if previously set) size and crc each time a
file is transferred. Or, users can gain additional protection from file corruption by
calculating these values as early as possible (preferably, on the worker node that first
creates the file, before the file is transferred over any network). The sam line mode
client helpfully provides a subcommand for calculating the checksum called “samweb
file-checksum.”

2.3.5 Application Information

The program that created the file is identified in sam metadata by a 3-tuple of strings
which represent the application (family, name, version). Sam does not require these
fields to be predefined in the database, so they can be anything the user chooses.

In the case of art framework programs, the application family will always be
“art.” Likewise, art framework programs will usually use the general purpose larsoft
executable “lar.” In this case, rather than storing the application name as simply
“lar,” which doesn’t convey much new information, we will store the application

5

Table 2: Suggested values for some enumerated metadata fields.

Field Values

file type

data

mc

unknown

file format

root

binaryraw-compressed

binaryraw-uncompressed

tar

text

unknown

data tier

generated

simulated

detector-simulated

raw

reconstructed

root-tuple

root-histogram

unknown

group uboone

crc type adler 32 crc type

data stream
all

supernova

run type

physics

special

calibration

laser

cosmic

test

unknown

6

name as the process name parameter stored in the fcl job file, or specified on the
command line using option “--process-name.” Of course, there may be special
cases (including the daq system) where some executable other than lar is used. In
these cases, the application name should reflect the name of the actual executable.

In the case of art programs, the combination of the appliation name and the data
tier will give a general idea of the purpose and configuration of the program, but not
full details. We will definitely want to have more information in the metadata about
how art programs were configured via their job fcl files. Our proposal is to add this
additional information using experiment-specific metadata (see Sec. 2.4.5).

2.3.6 Parentage Information

The sam metadata contains a field for identifying the parent files (there can be more
than one) for each file. At the metadata workshop, the minerva experiment reported
that they use this field to record the raw data parents. However, it was certainly the
intention of the sam designers that this field should be used to store the immediate
parents, and we propose to do that.

2.3.7 Data Stream

As its name implies, this metadata field is intended to identify different output streams
that are produced by the same program. The earliest opportunity for streaming is at
the daq level, which may generate multiple daq streams based on trigger information.
For example, we might choose to write booster and numi beam events to different daq
streams. We propose that the predefined data stream be used exclusively for such
daq streams, and offline streams be implemented using experiment-specific metadata
(see Sec. 2.4.7).

Regarding specific daq streams, see Table 2. We will probably want a catch-all
“all” stream. We will definitely need a separate daq stream for supernova data. We
may want to define additional daq streams later.

2.3.8 Run Information

In the sam metadata, runs are identified by a 2-tuple consisting of a run number
(an integer) and a run type (a string). For data, the run number and run type will
normally be assigned by the daq system, and carried forward to all descendant files.
Some proposed run types are listed in Table 2. Files can have multiple runs.

2.4 Experiment-Specific Metadata Fields

Sam metadata is designed to be extensible by the addition of experiment-specific
metadata fields, which are called parameters in sam documentation. These
experiment-specific metadata, or parameters, are represented in metadata definitions
and queries as a key-value pairs of the form category.name = value, where category,
name and value are whatever the experiment chooses them to be (other than prede-
fined categories and names, such as those listed in Table 1). Only scalar data types

7

Table 3: Beam parameters.

Parameter Type Values

bnb.proton energy float
bnb.target number integer
bnb.horn number integer
bnb.horn current float
bnb.horn polarity string forward/reverse
numi.proton energy float
numi.target number integer
numi.horn1 number integer
numi.horn1 current float
numi.horn1 polarity string forward/reverse
numi.horn2 number integer
numi.horn2 current float
numi.horn2 polarity string forward/reverse

Table 4: Detector parameters.

Parameter Type Values

detector.cathode voltage float
detector.plane0 voltage float
detector.plane1 voltage float
detector.plane2 voltage float
detector.pmt string on/off

are supported for parameter values (no structs or arrays). Actually, parameter values
are represented in the sam database as strings, even if they represent numbers.

2.4.1 Beam Status

Since microboone actually has two neutrino beams, we propose to define two param-
eter categories called bnb and numi. Refer to Table 3 for proposed names and values
of beam parameters.

2.4.2 Detector Status

Some proposed detector status parameters are listed in Table 4.

8

Table 5: Trigger parameters.

Parameter Type

trigger.name string
trigger.version string

Table 6: Online parameters.

Parameter Type Value

online.data quality string good/bad

2.4.3 Trigger Configuration

There is no possibility to capture all of the details of the trigger configuration in the
sam metadata. Therefore, we propose to record the trigger configuration name and
version, which can be used to cross reference an external trigger database. Here, the
trigger configuration name refers to full suite of triggers that is in effect for any given
run, rather than a specific trigger.

We are assuming that the trigger configuration name and version will be unique
for any single run. Since sam allows files to be associated with multiple runs, this
parameter will only make sense for files that have one run (especially for raw data).

2.4.4 Additional Online Information

This category is intended as a catch-all for everything related to the online or daq
configuration, besides beam, detector, and trigger configuration. The source for this
information will be the daq system or the shifters. Refer to Table 6.

2.4.5 FCL Configuration

In addition to the application name and version, art programs are fully specified by
their fcl configuration. Since the fcl configuration is much too complex to be fully
captured by sam metadata, we propose to treat the fcl configuration similarly as the
trigger configuration, by specifying the fcl name and version, which name and version
can be used to reference an external fcl database (see Table 7). In fact, microboone
already has the equivalent of an fcl database, in the form of the ubfcl ups product,
which is versioned and backed up in the ubooneoffline svn repository. Using the ubfcl
product, the fcl name and version should be fully adequate to determine the exact
fcl configuration. We should require that files in sam have their fcl configurations in
the ubfcl svn repository.

9

Table 7: Fcl parameters.

Parameter Type

fcl.name string
fcl.version string

Table 8: Project parameters.

Parameter Type

ub project.name string
ub project stage string
ub project.version string

2.4.6 Project Configuration

Sometimes it will be necessary to record not just the configuration of the most recent
program that produced the file (the fcl configuration), but the configuration of an
entire processing chain. Typical examples of this are MC files, where the generator
configuration is relevant at later processing stages. Therefore we propose to include
a project parameter (see Table 8). As for similar cases, the project parameter values
will be used to cross reference an external project database (for example, the ubxml
product in the ubooneoffline repository).

2.4.7 Offline Streaming and Filtering

At some point, we will certainly want to create sparse datasets for various specialized
purposes, like particular physics analyses. For many purposes, the combination of
application and fcl configuration will be adequate to specify how such filtering was
done. To handle, in addition, the case where the same filtering program (or any
program) produces multiple output files, we propose to define a filter name parameter
(see Table 9).

References

[1] R. Illingworth, https://cdcvs.fnal.gov/redmine/documents/594.

Table 9: Filter parameters.

Parameter Type

filter.name string

10

[2] https://cdcvs.fnal.gov/redmine/projects/sam-web/wiki/Metadata format.

11

