Sharing the workload in collider Monte Carlo simulations

Neutrino + Theory WG, FNAL
October 25, 2017
Stefan Prestel, John Campbell (Fermilab)
input from Nadine Fischer, Holger Schulz, Johannes Bellm

Outline

Introduction

Collider event simulation.

Factorization of collider event generation

"Coding models" and interfaces.

How we agree on standards.

Observables, data presentation and analysis.

words of caution, maybe?

Outlook: What can we (LHC aficionados) do?

Figure 1: (a) Two 2 \rightarrow 2 scatterings, (b) a 2 \rightarrow 2 scattering followed by a rescattering

...where we face similar problems, but with partons.

Collider event generator development is a theorist's playground:

- ... lots of perturbation theory Tool chains $\mathcal{L}(\mathsf{my} \ \mathsf{fav}.\ \mathsf{model}) \!\!\to \sigma \to \mathsf{detector}$ High precision for parton distribution functions (PDFs), cross sections;
- lots of non-perturbative modelling for multiple interactions between nucleon constituents to convert partons to hadrons;
- + lots of data to beat down uncertainties in non-perturbative modelling;
- + lots of software tools.

...but is probably less challenging than neutrino event generation.

Start with hard scattering of partons... usually multi-parton states with one/two loops \rightarrow complicated, lots of theory, software & interfacing.

Produce radiative cascade (quarks/gluons/photons...)...

Form proto-hadrons (colour strings, colour clusters)...

Not shown: Multiple interactions, parton rescattering, diffractions, since usually handled internally (exception: DIPSY code)

...and decay to primary hadron (resonances) and secondary hadrons/photons et cetera, including e.g. hadron rescattering

A word on calculability

Fact: Distribution of hadrons in detector not calculable in QCD. If LHC would rely on multiplicities alone, progress would be hopeless.

A word on calculability

Fact: Distribution of hadrons in detector not calculable in QCD. Claim: LHC is only successful because we use "safe" observables: Coarse-grained and averaged, i.e. jets.

Event generation is broadly factorized into

- ▶ Precision hard scattering cross section (most "hard-core theory" → John, Walter)
- Other event generation (infrared physics, non-perturbative aspects → Steve, Stefan)
- ▶ Analysis object (jet) definition, analysis and/or detector simulation (analysis → Holger Schulz)

Factorized of collider event generation

More factorized – i.e. more codes contributing – where it matters most (precision hard scattering)

	Downstream	Upstream
Hard cross section	PDF lib, loop integrals	parton shower
Parton shower	PDF lib, hard cross section	MPI, hadronization
Hadronization	parton shower, MPI	analysis, detector sim.
Analysis	data repo s , ob s def. tools	results

- ► File-based interfaces
- ► Run-time interfaces

	Downstream	Upstream
Hard cross section	PDF lib, loop integrals	parton shower
Parton shower	PDF lib, hard cross section	MPI, hadronization
Hadronization	parton shower, MPI	analysis, detector sim.
Analysis	data repo s , ob s def. tools	results

- File-based interfaces
- ► Run-time interfaces

	Downstream	Upstream
Hard cross section	PDF lib, loop integrals	parton shower
Parton shower	PDF lib, hard cross section	MPI, hadronization
Hadronization	parton shower, MPI	analysis, detector sim.
Analysis	data repo ^s , ob ^s def. tools	results

- File-based interfaces
- ► Run-time interfaces

	Downstream	Upstream
Hard cross section	PDF lib, loop integrals	parton shower
Parton shower	PDF lib, hard cross section	MPI, hadronization
Hadronization	parton shower, MPI	analysis, detector sim.
Analysis	data repo ^s , ob ^s def. tools	results

- File-based interfaces
- ► Run-time interfaces

- Exchange parameters, particle id's and four-vectors
- Many providers, many users → Avoid specialized interfaces.
- Computationally precious intermediate results.
- Interface: One centralized reader/writer for few languages.

```
Block mass
    6 1.732000e+02 # MT
     1.777000e+00 # MTA
   23 9.118760e+01 # MZ
   24 8.039800e+01 #
   25 1.200000e+02 # MH
   82 0.000000 # gh : 0.0
Block sminputs
    1 1.323384e+02 # aFWM1
    3 1.180000e-01 # aS
        6 1.501700e+00 # WT Gamma t LO
DECAY 23 2.495200e+00 # W7
DECAY
      24 0.000000e+00 # WW
DECAY 25 5.753088e-03 # WH
DECAY 82 0.000000 # gh : 0.0
Block ONUMBERS 82 # ah
        1 0 # 3 times electric charge
        2 1 # number of spin states (2S+1)
        3 8 # colour rep (1: singlet, 3: triplet, 8: octet)
        4 1 # Particle/Antiparticle distinction (0=own anti)
```

e.g. exchange four-momenta, flavours, cross sections, uncertainties for hard scattering with Les Houches Event Files (LHEF) exploiting *Cross section* = sum over events.

```
66 0.50109093E+02 0.14137688E+03 0.75563862E-02 0.12114027E+00
                                                                                               0 0.00000000E+00 0.00000000E+00 0.14322906E+03 0.14339946E+03 0.48000000E+01 0.0000E+00 0.0000E+00
               2 -1 0 0 502 0 .000000000-00 0 .000000000-00 .933441317E-03 0 .93544323E-03 0.330000000E-00 0 .0000E-00 0 .0000E-00 1 1 2 0 0 .34258004E-02 .15708566E-03 .1062960E-03 0 .2257162E-03 0.80398000E-02 0.0000E-00 0 .0000E-00 5 1 2 501 0 .13668073E-03 .53507424E-02 .40614473E-02 0 .14721538E-03 0.48000000E-01 0.0000E-00 0 .0000E-00 0 
                                                                                               0 0.22093954E+03 0.19339308E+03 -.64530364E+03 0.70896548E+03 0.33000000E+00 0.0000E+00 0.0000E+00
<rwqt>
  <wgt id="1001"> 0.50109E+02 </wgt>
  <wqt id="1002"> 0.45746E+02 </wqt>
  <wqt id="1003"> 0.52581E+02 </wqt>
  <wat id="1004"> 0.50109E+02 </wat>
  <wqt id="1005"> 0.45746E+02 </wqt>
  <wqt id="1006"> 0.52581E+02 </wqt>
  <wgt id="1007"> 0.50109E+02 </wqt>
 <wgt id="1008"> 0.45746E+02 </wgt>
 <wqt id="1009"> 0.52581E+02 </wqt>
<weights> 1.000e+00 0.204e+00 1.564e+00 </weights>
<scales muf="90.1" mur="90.2" mups="90.3" newscale="90.4"> random stuff </scales>
```

Often used between hard scattering cross section generator (MadGraph) and event generator (Pythia) Not possible if up- or downstream code cannot be run stand-alone.

e.g. store four-momenta, flavours, cross sections, uncertainties after event generation in HepMC event files before detector simulation & for analysis prototyping

```
HepMC::Version 2.06.09
HepMC::IO GenEvent-START EVENT LISTING
5.0727818584935028e-07 2.8641748972593421e-02
      -6.1062266354383610e-16 0 1.000000000000000e+01 1.00000000000002e+01 0 4 0 0 -1 0
      -6.1062266354383610e-16 0 1.0000000000000000e+01 1.000000000000002e+01 0 21 0 0 -3 0
     1.1102230246251565e-16 2.7755575615628914e-17 -3.3786624711333191e-01 3.3786624711333263e-01 0 21 0 0 -3 1 1 101
           6629084424718e+00 -1.4642943199919159e-01 7.4852688365925690e+00 7.6449166342819295e+00 1.0566000000000000e-01 1 0 0
     -1 5436629084424731e+00 1 4642943199919156e-01 2 1768649162940950e+00 2 6929496128313986e+00 3 3000000000000002e-01 23
    2212 -2.2204460492503131e-16 5.5511151231257827e-17 -3.4590375409931440e-01 1.00000000000011e+00 9.3827000000000005e-01 4 0 0 -4 0
  7 1 2.3418389329410927e-01 3.8065298354292854e-01 -5.8804961543564516e-02 4.5077357205215524e-01 0 61 0 0 -2 1 1 101
  9 2203 -4.7481444848931020e-01 -3.1949722919432438e-01 1.1083686479487653e-01 9.6683091564896451e-01 7.71329999999999e-01 63
   2 -1.0688484599531634e+00 4.6592666119351611e-01 2.0579905445132347e+00 2.3882524500691016e+00 3.30000000000000e-01 62 0 0 -6 1 1 101
               5551661431243e+00 -8.9555571034242387e-02 1.7567327618510375e+00 2.0607978269413185e+00 1.395700000000000e-01 1 0 0 0
     2214 -4.7910774229934994e-01 2.3598500303343378e-01 4.1209464745707314e-01 1.2942855387767489e+00 1.1045903797498771e+00 2 0 0 -7 0
  12 2212 -3.9016256981713637e-01 2.3432010072537812e-01 4.3706067676524718e-01 1.1307101169463198e+00 9.3827000000000005e-01 1 0 0 0 0
  13 111 -8.8945172482213411e-02 1.6649023080556186e-03 -2.4966029308174188e-02 1.6357542183042872e-01 1.34979999999999e-01 2 0 0 -8 0
V -8 0 -1.6789351900021416e-06 3.1426810414801768e-08 -4.7126048542432794e-07 3.0876609068971146e-06 0 2 0
  14 22 1.3119240933915144e-02 -4.5803387936032995e-02 2.4978883742856808e-03 4.7710630633342535e-02 0 1 0 0 0 0
       -1.0206441341612857e-01 4.7468290244088614e-02 -2.7463917682459871e-02 1.1586479119708619e-01 0 1 0 0 0
```

Runtime interfaces

- ... necessary when software not stand-alone (e.g. if divergent)
- ... to avoid large files

e.g. interface between "one-loop providers" and x-section generators via Binoth Les Houches Accord (BLHA)

How to get there?

- Prepare a wishlist.
- ▶ Lock relevant experimenters & theorists away in the Alps for 2 weeks. Fuel with cheese & wine.
- Discussions on site, try to agree, enforce detailed proceedings afterwards.
- ▶ Implement, rethink, repeat after two years.
- ⇒ Les Houches Accords

Other run-time interface models (Pythia bias!)

Most LHC code is C++ \longrightarrow Use power of common language! Pythia 8: Allow to inherit from & replace most physics modules.

```
2 class DireTimes : public Pythia8::TimeShower {
                                                   // DIRE includes.
  virtual double pTnext(Pythia8::Event&,double,do
                                                  2 #include "DireTimes.h"
6 };
8 class DireSpace : public Pythia8::SpaceShower {
                                                  6 using namespace Pythia8;
virtual double pTnext(Pythia8::Event&,double,do
                                                  9 int main(){
                                                      Pythia pythia;
                                                     DireTimes times(&pythia);
   Mostly used for BSM cross
                                                     DireSpace space(&pythia);
                                                     DireTimes timesDec(&pythia);
       sections and new showers.
                                                      pvthia.setShowerPtr( &timesDec. &times. &space);
   Rather high threshold,
                                                      pvthia.init():
       but gives extreme
       flexibility.
                                                      pythia.next():
                                                      return 0:
```

Other run-time interface models (Pythia bias!)

UserHooks model: Allow user to overwrite important decisions

ightarrow Use power of statistics to bend probabities/rates to your will: Strawman implementation + easy external user re-weighting!

Other run-time interface models (Pythia bias!)

UserHooks model: Allow user to overwrite important decisions

ightarrow Use power of statistics to bend probabities/rates to your will: Strawman implementation + easy external user re-weighting!

Produce splitting with rate $p = 1/\theta^4$

Overwrite UserHooks::doVetoFSREm:.ssion:

to reject emission with probability $\frac{1/\theta^2}{p}$

- \Rightarrow Average angle becomes larger. Rate now given by $p_{new}=1/\theta^2$
- ⇒ Replaced Pythia's rates by your own calculation

Analysis objects

Crucial for LHC: Define data objects that are "insensitive"

- ... to phenomena we do not understand well enough,
- ... to corrections we cannot calculate well enough.

Charged particles always come with a photon cloud ...or with even more charged particles.

So how should we "define" what we mean by e.g. "muon"?

Need to combine charged particle + photon momenta to extract ν energy loss / momentum that probes the nucleus! But how? Should we use small cones?

Need to combine charged particle + photon momenta to extract ν energy loss / momentum that probes the nucleus! But how? Should we use small cones or big cones?

Can "vacuum radiation" and detector smearing / transition radiation ever be separated? Is it okay to correct for one, but not the other?

Analyses, data and the theory community

Theory:

- Make event generators public and linked at a common resource (see e.g. hepforge.org)
- Decouple analysis from event generation.
- ▶ Make analysis prototype code public (see e.g. RIVET)

Experiment:

- Agree on common analysis objects ("hey, let's all use infrared-insensitive jets and QED-dressed leptons")
- Make data public (see e.g. opendata.cern.ch, hepdata.net)
- Make analysis code public (see e.g. RIVET)

Easy data & analysis access ⇒ Theory+software progress

Outlook: How can the collider community be of service?

- ► Should certainly make sure that LHC event generators work, at a technical level, together with neutrino generators
- Can supply detailed DIS-like calculations to help define "safe" observables (easy example in the talk: QED corrections).
- ► Can supply analysis tools. Example: Rivet (LHC) inspired by H1/Zeus (HERA) efforts.

Question: Is it reasonable to first want to get DIS right, then nucleon scattering, and learn while doing that, before moving to the nucleus?