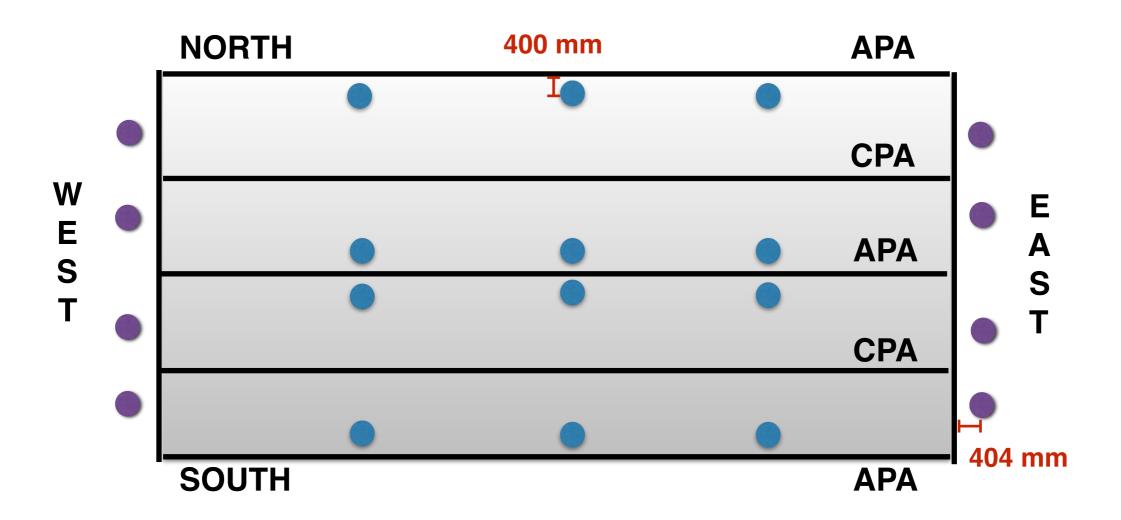
Calibration Task Force Update

Sowjanya Gollapinni (UTK) Kendall Mahn (MSU)


DUNE Monthly Collaboration Call December 8, 2017

Join Calibration TF Meetings

- Subscribe to our mailing list: "DUNE-CALIBRATION-TF"
- We meet weekly (alternating times):
 - Tuesdays, 8 to 9:30 am CT
 - Thursdays, 2 to 3:30 pm CT
- Find us on Indico: https://indico.fnal.gov/category/703/
 - Under DUNE → Task Force Meetings → SP/DP Calibration
- Contact us if you would like to get involved:
 - Conveners: Sowjanya (sgollapi@utk.edu); Kendall (mahn@pa.msu.edu)
- If you are a calibration enthusiast, we want you there!

Calibration Feedthrough Status

Light blue: inside FC; Purple: outside FC; All ports on top of the TPC

- All multi-purpose ports (Laser, Radioactive source etc.)
- This updated FT proposal submitted in first week of November.
- Currently under discussions on implementation with the cryostat team

Calibrations @ DUNE Physics Week

- Goal: get more hands-on activity and recruit/engage more people for calibrations
 - While we weren't able to achieve a lot of hands-on part, DPW served as a good "conveners retreat" to brainstorm on how different physics groups should interact to achieve the goals for TDR
- Productive discussions on various topics
 - Calibrations in Technical Proposal & TDR
 - Calibrations decision making process
 - LBL+calibrations joint session
 - Reco/Sim+calibration joint session
- One hands-on activity Alignment with Cosmics (T. Junk)

TDR Volumes

(https://indico.fnal.gov/event/15181/session/7/contribution/25/material/slides/0.pdf)

Multiple volumes, each volume around 150 - 200 pages

Volumes

- Volume 1: Executive Summary
- Volume 2: Physics
- Volume 3: Single-Phase Far Detector: Overview
 - + sub-system volumes
- Volume 4: Dual-Phase Far Detector: Overview
 - + sub-system volumes
- CDRs: Computing and Near Detector

Before DPW: Where does Calibration sit in these TDR volumes?
 What do we foresee for calibrations in the Technical Proposal?

Calibrations span broad

(probably easier to categorize this way for TDR purposes)

- There is low level calibration (More Detector related)
 - E.g. detector validation; parameters for models; corrections etc.
 - Broadly, relating to TPC response and photon detector response. E.g.
 Electronics noise, wire response, channel gain, photon gain, PDS to TPC
 calibration,...
 - Electron lifetime (purity), recombination (E-field), space charge, other E-field distortions, alignment, drift velocity etc.
- There is high-level calibration (More Physics related)
 - Standard candles for Physics. E.g. Michel electrons, Calibration with π° etc. Test models
 - What can calibration achieve for: Energy scale, Energy resolution, Particle ID efficiencies, Various particle responses (charged hadrons, neutrons,...)
 - What is the impact of calibration the physics program? (LBL, SN, etc)

Approach for Technical Proposal

(requires defining a calibration decision making process)

- In conjunction with collaboration input, develop a separate section for "Calibration Strategy" in the Technical Proposal
 - Outline the various physics arguments and provide an overview of the proposed calibration hardware.
 - State the intentions of the collaboration for calibration hardware systems (e.g. Laser, photon calibration etc.) along with strong physics motivations
- A calibration workshop planned (in March?) to converge on calibration strategy and hardware systems by the Technical Proposal timeline
- Post Technical Proposal: Develop the systems presented in the Technical Proposal into concrete proposal for the TDR.

Volume 3: FD-SP Similar Structure for Volume 4: FD-DP

- Volume 3: Single-Phase Far Detector: Overview
 - Design Motivation
 - Cryostat and cryogenics
 - Overview of the Single-Phase Far Detector
 - ProtoDUNE-SP
 - Detector Performance
- Volume 3A: APAs
- Volume 3B: High Voltage System
- Volume 3C: TPC Electronics
- Volume 3D: Photon Detection System
- Volume 3E: DAQ
- Volume 3F: Slow Controls and Cryogenic Instrum.
- Volume 3G: Installation and Integration

There will be a Calibration Strategy chapter here

Details of the hardware will be presented in the corresponding consortium chapters of the TDR.

Volume 2: Physics TDR Structure

Current Outline

- Executive Summary
- Introduction to LBNF and DUNE
- Scientific Landscape
- Tools and methods employed
- Standard neutrino oscillation physics program
- GeV-scale non-accelerator physics program
- Supernova neutrino bursts and physics with low-energy neutrinos
- Precision physics with the near detector
- Additional opportunities for Beyond-Standard-Model physics
- Summary and conclusions

There will also be a section in the Physics Volume of the TDR discussing the physics-process based calibration measurements and the assumed systematic uncertainties that will be propagated to the physics sensitivities.

Calibration x Reco/Sim: Tools & Interfaces

(https://indico.fnal.gov/event/15181/session/7/contribution/27/material/slides/0.pdf)

Many Calibration quantities

TPC response model

Argon ionization energy

Electron drift velocity

 t_0 offsets

Electron lifetime

Recombination parameters

Electric field

Longitudinal and transverse electron diffusion

Wire positions/geometry

Wire field response

Channel gain

Overall electronics analog transfer function

Electronic crosstalk

Electronics noise, including correlated noise

ADC linearity (differential and integral).

Photon detector response model:

<similar list here>

(See Backup for more)

High level quantities

Position reconstruction biases

Direction reconstruction biases

Energy scale

Energy resolution

Particle ID efficiencies

Noise removal efficiencies

•••

Particle response

Charged hadron propagation Neutron response

...

- Is this list complete?
- · Position/time dependance?
- Needed precision?
- How to constrain? How much can you relay on external measurements?

Many Calibration sources

- Purity Monitors
- Temperature monitors
- Survey
- · Current monitors
- $\bullet\,\upsilon_{_{\mu}}\,CC$ events
- Michel electrons
- Stopping muons
- Stopping protons
- Muon Crossers, APA/CPA piercers
- Ar³⁹
- Laser system
- CRT tagger
- · Other radioactivity

- Michel electrons
- υ₁₁ CC events
- π⁰ mass peak
- Other decays (K⁰s...)
- Tagged events

What else??

- Keep in mind each source comes with its own challenges
- Best Strategy: Option of multiple ways to calibrate

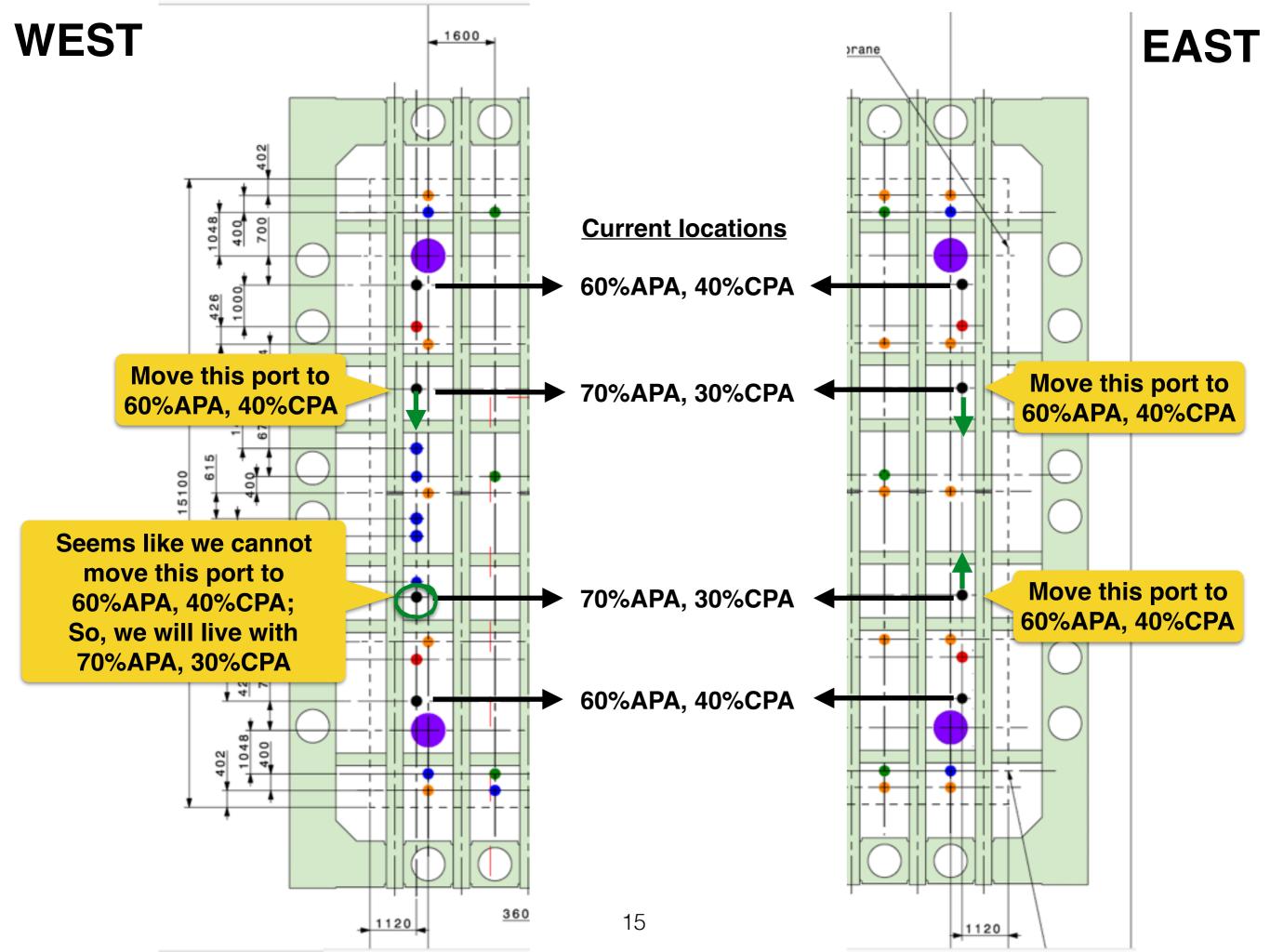
C. Backhouse et al.,

- Success: Use of cosmic samples to investigate alignment (T. Junk)
- Challenge: Develop tools (e.g. fhicl knobs) & interfaces (both at sim/reco levels) that propagate calibration quantities into LBL or to do standalone studies to assess impact

Calibration x LBL Group: Road to TDR

(https://indico.fnal.gov/event/15181/session/1/contribution/30/material/slides/0.pdf)

- Success: Agreed to methods of inclusion (pseudo data, parameterized uncertainty)
- Challenge: For TDR, only can include a small set of fully propagated effects (prioritize)
- Next steps:
 - Build a master list of systematics that calibration constraints;
 separate by in-situ and external knowledge (e.g. protoDUNE)
 - Take test cases (known, significant effects) and push them through to LBL to confirm handoff/interdependencies


Next Steps for TF

- Our last FT proposal for calibrations is currently being discussed with the cryostat team — goal to finalize by this month.
- Future TF meetings focused on defining a calibration strategy and hardware needed by the Technical Proposal timeline
 - *Goal:* Present a calibration strategy at the January collaboration meeting to get collaboration wide input and key criticisms/questions
 - Not all studies can be done; we will still be driving on arguments, past experience and future projections;
- Plan for a calibration workshop in March to refine strategy and address key concerns raised — converge on a strategy for TP

SPARES

Outline

- Feedthrough Status (1 slide)
- DUNE Physics Week (DPW) Summary
 - Technical Proposal (TP)/Technical Design Report (TDR) plans for Calibration (4 slides)
 - Calibration decision making process (2 slides)
 - Interfacing with LBL & Reco/Sim (2 slides)
- Next Steps (1 slide)

- Two Main Fitters for LBL:
 - GLoBES current baseline
 - CAFAna relatively new; under validation

Systematics studies

Bottom-up: re-run entire simulation/reconstruction chain with sim/detsim/physics parameters varied, rerun selections & sensitivity analysis for each variation

Resource intensive Ready to go in both CAFAna and GLoBES

E.g. Wire spacing study

Top-down: shape, normalization systematics or modify smearing to account for underlying detector/physics effect

Difficult to relate to underlying parameters? Ready to go in both CAFAna and GLoBES

E.g. Energy bin level systematics

Reweighting: reweighting events to account for parameter variations

Reweighting not in place in larsoft

Some reweighting possible with CAFAna