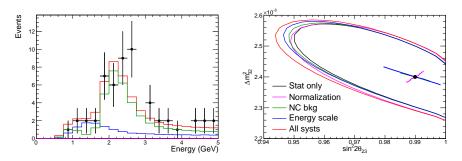
CAFAna for DUNE

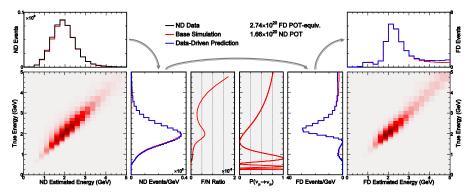
DUNE UK meeting - Nov 2017

Chris Backhouse – University College London

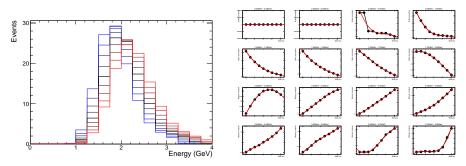
What is CAFAna?


CLUB D'AFFAIRES FRANCO-ALLEMAND NANTES-ATLANTIQUE DEUTSCH-FRANZÖSISCHER WIRTSCHAFTSCHUB NANTES-ATLANTIQUE

What is CAFAna?

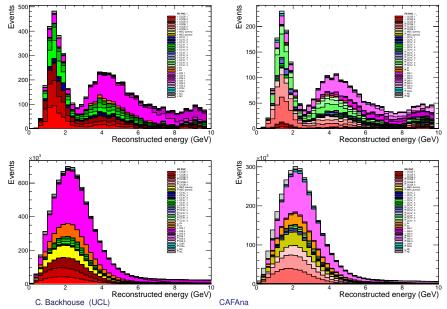

- ► NOvA's standard analysis framework ν_{μ} , ν_{e} , xsecs...
- Common Analysis Files are NOvA's standard ntuples
- Ported to DUNE at LBL hackdays in February
- ► Input files are the MVASelect ntuples
- ► Not just fitting, standard framewwork for making data/MC plots etc
- Structured as a bag of tools to plug together, not monolithic
- ► Write a .C root macro to drive analysis
- ► Large pool of NOvA collaborators with experience
- ► Speed is important for productivity, aim for *O*(minutes) interactively

Fits

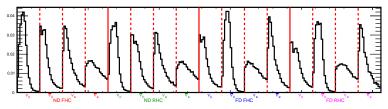

- Oscillatable spectra stored as 2D histograms (speed)
- Maximum likelihood fit, systematics included by profiling

Extrapolation

- ► NOvA heritage means hooks included for direct ND→FD extrap
- No implementation for DUNE yet (I am interested though)
- All work so far has been joint fit between ND and FD

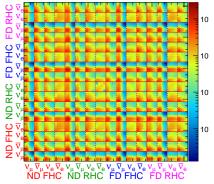

Systematic interpolation

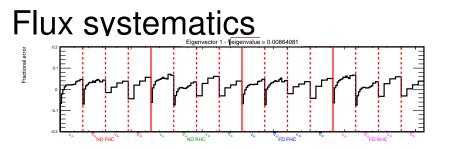
- Systematic pull terms can deal with non-gaussianicity not encoded by covariance matrices
- ► Shift prediction by interpolating between discrete templates
- Apply reweights or changes to event record, or interpolate between specially-generated samples


XSec systemat		Magnitude 8.2%	$\frac{\text{Comment}}{Q^2 < 0.2}$
NOTO SYSITIIAL		23%	$0.2 < Q^2 < 0.55$
5	V OOQL U	48%	$Q^2 > 0.55$ $Q^2 < 0.2$
	ν CCQE 1 ν CCQE 2	8.7% 24%	$Q^{-} < 0.2$ $0.2 < Q^{2} < 0.55$
Implementation of simple	$\overline{\nu}$ CCQE 2 $\overline{\nu}$ CCQE 3	24% 40%	$Q^2 > 0.55$
• •	ν MEC dummy	100%	Q > 0.55
CDR-style scales	$\bar{\nu}$ MEC dummy	100%	-
Implementation of 00 \/ALOD	$\nu \text{ CC1} \pi^0 1$	13%	$Q^2 < 0.35$
Implementation of 32 VALOR	$\nu \text{ CC1} \pi^0 2$	23%	$0.35 < Q^2 < 0.90$
xsec categories (right)	$\nu \text{ CC1} \pi^0 \text{ 3}$	35%	$Q^2 > 0.90$
xsee categories (light)	$ u$ CC1 π^{\pm} 1	13%	$Q^2 < 0.30$
	$ u$ CC1 π^{\pm} 2	24%	$0.30 < Q^2 < 0.80$
1	$ u$ CC1 π^{\pm} 3	40%	$Q^2 > 0.80$
E	$\bar{\nu} \operatorname{CC1} \pi^0 1$	16%	$Q^2 < 0.35$
E 🦯 📕	$\bar{\nu}$ CC1 π^0 2	27%	$0.35 < Q^2 < 0.90$
v _e /y _u =	$\bar{\nu} \operatorname{CC1} \pi^0 \operatorname{3}$	35%	$Q^2 > 0.90$
		16%	$Q^2 < 0.30$
	$ar{ u}$ CC1 π^{\pm} 2	30%	$0.30 < Q^2 < 0.80$
	$ar{ u}$ CC1 π^{\pm} 3 3	40%	$Q^2 > 0.80$
	$\nu 2\pi$	22%	-
		22%	-
	ν DIS 1 ν DIS 2	3.5% 3.5%	$E_{ u} < 7.5 \ 7.5 < E_{ u} < 15$
	ν DIS 2 ν DIS 3	2.7%	$E_{\nu} > 15$
v 60 烷 1 v 88 换 3		1%	$E_{\nu} < 7.5$
	$\bar{\nu}$ DIS 2	1.7%	$7.5 < E_{ u} < 15$
	$\bar{\nu}$ DIS 3	1.7%	$E_{ u} > 15$
		128%	-
	0	134% 16%	-
COCCOSS REFERENCES > COCCOS >>>>	ν NC ν NC	16%	-
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	ν_e/ν_μ dummy	3%	Not implemented yet
C. Backhouse (UCL) C.	AFAna		6 / 13

XSec systematics

7/13

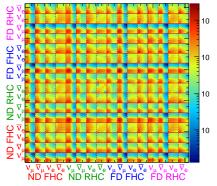

Flux systematics



- Flux systs from beam group's covariance matrix
- Use PCA to find smaller basis that covers most of the effect

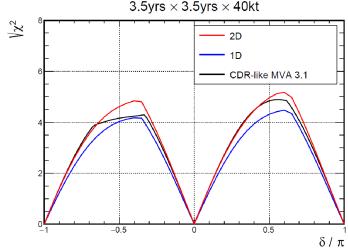
indico.fnal.gov/event/12345/contribution/85

 More effort required to stand up a full fit with everything included



- Flux systs from beam group's covariance matrix
- Use PCA to find smaller basis that covers most of the effect

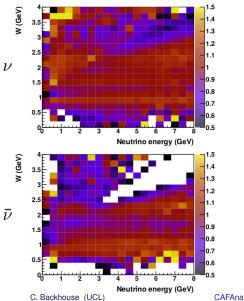
indico.fnal.gov/event/12345/contribution/85

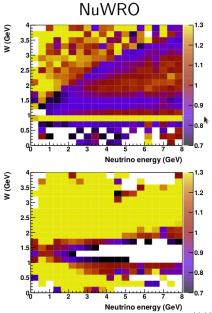

 More effort required to stand up a full fit with everything included

File formats

- ► MVASelect files are fairly crude, first thing to hand
- ▶ AnaTree files are \sim the standard, a little unwieldy
- Consensus that we need a standard file format
 - Lightweight for oscillation fits
 - ► Ideally customizable, include only the variables you need
 - Ideally matching ND and ProtoDUNE too
 - A lot of ideas at Physics Week
 - Time, Interest, Expertise: pick two
- Fragmentation of file formats makes it extremely difficult to combine analyses, and forces collaborators to keep relearning basic skills

Activity

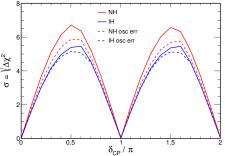



- Kirk Bays has been studying LBL sensitivity
- ► e.g. gains from 2D energy/PID binning

```
C. Backhouse (UCL)
```

CAFAna

Activity



11/13

Activity

- ► Elizabeth Worcester is working on file format improvements
- Alex Radovic is interested in evaluating CVN performance
- ► DUNEPrism folks interested in quantification of that technique
- Effort to validate fitters against each other

Conclusion

- ► If your work involves fitting...
- ► Or histogramming event properties...
- ► Then CAFAna can help you
 - Possibly after adding info to the files
- ► None of the names on my previous slides are UK-based, yet...
- Many ideal starter studies haven't been done due to lack of time
- A lot of ways to contibute to the tools themselves
- ► Features can be added/ported, but you have to yell
- Best way to get involved is to email me c.backhouse@ucl.ac.uk
- Probably the best more-technical talk is https://indico.fnal.gov/event/14362/contribution/2