Some considerations for timing photon detection

The time resolution of the drift coordinate: 400 ns (2.5 MS/s) This sets the upper limit on time scale granularity needed for matching the light signal with charge

Two aspects for matching timing of light and charge:

- Knowing T₀ (relative to the start of the drift readout) of a SN neutrino, would allow to correct the reconstructed energy for impurity attenuation
- Help to determine if the nucleon decay candidates are within some fiducial volume

Temporal resolution considerations

E.g., positional based on TOF: the speed of light in LAr is 30 [cm/ns] / 1.38 [index of refraction] = 22 cm/ns. So with timing resolution for photon detection of 1 ns, the spatial resolution is on the order of 20 cm

Issues:

- 1. LAr is not a fast scintillator
- 2. Photon propagation is affected by Rayleigh scattering
- 3. PMT timing resolution (spread in transit time)
 - → Transit time is mostly between photocathode and 1st dynode

Properties of scintillation in LAr

Number of the photons (0.5 kV/cm, e- recomb ~ 0.7): ~22 000 γ /MeV Maximal number of photons (all e- recombine) : ~51 000 γ /MeV

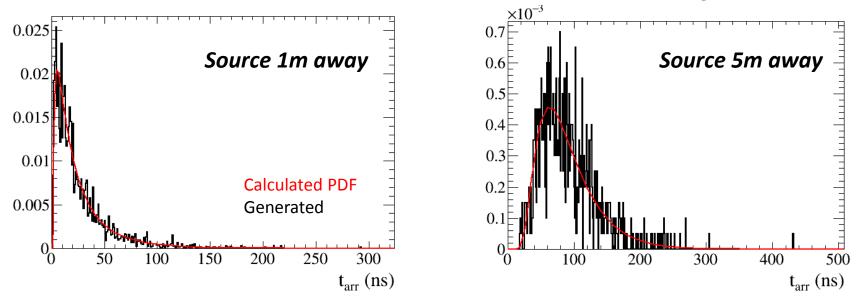
Primary scintillation (S1) consists of two components with massively different lifetimes:

• Fast component: $\tau_f = 6$ ns

See e.g., Hitachi et al., Phys. Rev. B27 5279 (1983))

- Slow component: $\tau_s = 1600$ ns
- The fraction of light going into fast / slow contribution depends on recombination effects, but for mip-like signals fast/slow ~ 30%,

Even if <u>all of the light</u> comes from the fast component, trying to get a timing resolution at a level of 1ns for photon arrival times will depend on the number of detectable photons


The resolution for TOF with scintillator emission probability $e^{-t/\tau}$ and n arriving photons is:

$$\sigma = \tau/n$$

In case of single photon detection timing resolution is given by au

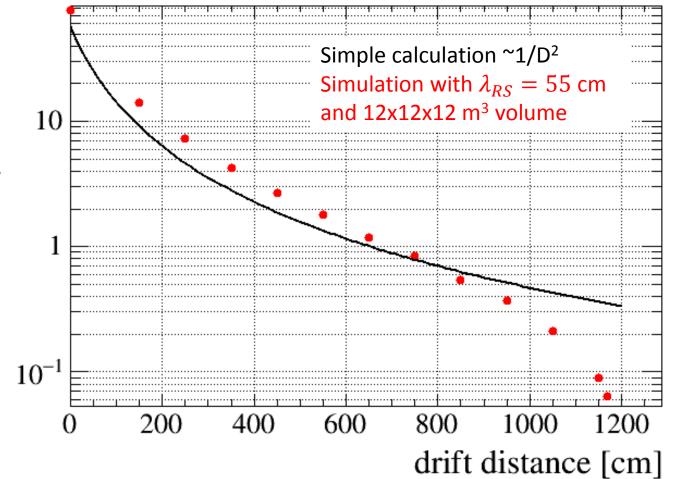
Rayleigh scattering

- According the latest analyses: $\lambda_{RS} \sim 60 \text{ cm}$
- The scattering is largely isotropic, i.e., photons are as likely to scatter in any direction
- For large source-detector distances the photon arrival time is not simply given by d/v, but is longer because of non-negligible path variations due to the RS scattering

Photon arrival time distributions $\lambda_{RS} = 55$ cm

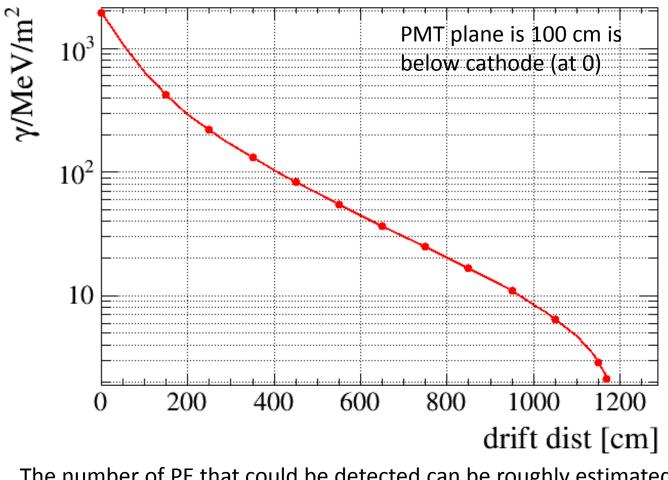
For large distance RS could smear the photon transit time by tens of ns

Spread in transit time


HAMAMATSU

Anode Sensitivity							(at +25 °C)				
Dark Current (After 30 min storage in darkness)		Dark Count (After 15 hours storage in darkness)		Time Response			Single		Pulse Linearity		
				Rise Time	Electron Transit	Transit Time Spread	Photo-electron (Peak to valley ratio)		at ±2 %	at ±5 %	Type No.
Typ. (nA)	Max. (nA)	Тур. (s ⁻¹)	Max. (s ⁻¹)	Typ. (ns)	Time Typ. (ns)	(FWHM) Typ. (ns)	Min.	Тур.	Deviation Typ. (mA)	Deviation Typ. (mA)	Type NO.
50	700	4000	8000	3.8	55	2.4	1.5	2.5	20 (60)	40 (80)	R5912
1000	5000	6000	12 000	4	68	2.8	1.5	2.5	40	70	R5912-02

- The transit time is (surprisingly) long for R5912-mod2 \rightarrow 68 ns
- The FWHM is ~3 ns → Sets a limit on a precision for photon timing measurements

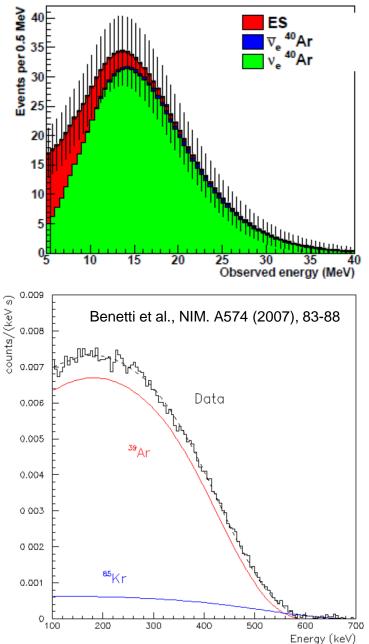

Photons per 8" detector

No attenuation, no cathode opacity PMT plane is 100 cm below the cathode plane

γ/MeV/PMT

Photons / m² in detection plane

The number of PE that could be detected can be roughly estimated as $N_{pe} \approx N_d \times 0.0314 \times 0.5 \times 0.2 \times N_{\gamma} = N_d \times 3N_{\gamma}/1000$ M_{QE} Photons / m2 Number of detectors per WLS (1/2 of photons


/ m2 x effective det area are emitted up)

Photons / m² in detection plane

- Large variation in sensitivity to over the drift volume: O(100) variation
- Effect of radiological backgrounds? Ar39 is 1Bq/kg → 1400 Bq/m³

SN neutrino spectrum

7

Summary

- For light-charge signal association a timing resolution on light signals should not be greater than 400 ns = sampling of the charge readout
- Timing resolution for a detection at a few photon level is limited by physics of the light production and propagation in LAr and the time response of the PMT
- For large detector volumes RS would dominate achievable timing resolution