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Outline

1 Progress: Electron beam shaping and its applications

2 Canonical Angular Momentum (CAM) dominated beams at
FAST

Theoretical background
Round-to-flat transformation
CAM beam generation
Flat beam generation

3 Transverse beam shaping and emittance-exchange setup
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Progress: Year 1
The Joint University-Fermilab Doctoral Program acceptance

Main focus: Longitudinal instabilities due to space-charge;
longitudinal space-charge amplifier at FAST

Results: Proposed experimental setup for LSCA at FAST

Papers:

1 Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation, NIMA, 819,
(2016) 144-153

Conferences:

1 Numerical study of three dimensional effects in longitudinal space charge impedance, IPAC2015,
FERMILAB-CONF-15-225-APC

2 Numerical investigation of a cascaded longitudinal space charge amplifier at the Fermilab’s Advanced
Superconducting Test Accelerator, IPAC2015, FERMILAB-CONF-15- 226-APC

3 Simulation of Cascaded Longitudinal Space Charge Amplifier at the Fermilab Accelerator Science and
Technology (FAST) Facility, FEL2015, FERMILAB-CONF-15- 370-APC

Seminars:

1 APC seminar (Fermilab), CAD seminar (BNL)
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Progress: Year 2
Main focus: 1.3 GHz SRF accelerating cavity

transport measurement;
microlens array laser shaping; channeling radiation

Results: Confirmation of Chambers’ model;
comissioning of microlens array setup;

Papers:

1 Analysis and Measurement of the Transfer Matrix of a 9-cell 1.3-GHz Superconducting Cavity, Phys. Rev.
Accel. Beams 20, 4, 040102 (2017)

2 Spatial control of photoemitted electron beams using a microlens-array transverse-shaping technique, Phys.
Rev. Accel. Beams 20, 103404 (2017)

Conferences:

1 A Simple Method For Measuring The Electron-beam Magnetization, NAPAC2016,
FERMILAB-CONF-16-460-APC

2 Measurement Of The Transverse Beam Dynamics In A Tesla-type Superconducting Cavity, LINAC2016,
FERMILAB-CONF-16-398-APC

3 Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping
Technique, IPAC2016, THPOW021

Seminars:
1 Budker seminar 1/2 (Fermilab)
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Progress: Year 3 (current)

Main focus: CAM dominated and flat beams at FAST;
EEX+MLA experiments

Results: CAM beam generation at FAST (in progress); transverse
cathode imaging in time domain

Papers:

1 Magnetized and Flat beam generation at FAST (in progress) (2017)

2 Tunable bunch train generation in EEX+MLA setup (in progress) (2017)
Conferences:

1 Magnetized and flat beam experiment at FAST, IPAC2017, FERMILAB-CONF-17-172-APC

2 IPAC18 abstracts in preparation

Seminars:

1 Budker seminar 3 (Fermilab)
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Miscellaneous projects

Future experiments
• THz radiation generation from compressed flat beams
• Arbitrary emittance partitioning (flat beam + EEX)
• Flat beam compression + acceleration (ILC type beam)

Computational geometry in beam physics:
• Application of Voronoi diagram to mask-based intercepting phase-space measurements, IPAC2017,

FERMILAB-CONF-17-171-APC
Channeling radiation experiment:

• Commissioning and First Results From Channeling Radiation At FAST, NAPAC2016, arXiv:1612.07358
CTR generation from transversely modulated electron beams:

• Coherent transition radiation from transversely modulated electron beams, FEL2017,
FERMILAB-CONF-17-337-APC

and MORE...
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IOTA/FAST facility
High-brightness 300 MeV electron beams (Elog: 120200)

• Linac completed in 2017, ring will be completed in 2018
• Collaboration with Northern Illinois University
• Several experiments performed during Run 2017
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FAST beamline
• FAST injector - 1.3 GHz SRF linac (two CC → 52 MeV +

cryomodule → 300 MeV)
• Charge range: 10 fC - 3.2 nC per pulse (Cs:Te cathode)
• Nominal bunch length: 5 ps
• Includes chicane and skew-quadrupole adapter (RTFB)
• Detailed description of the facility: Antipov, S., et al, JINST,

12, T03002 (2017).
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Beam parameters

Parameter Value Units

Initial emittance (norm.) <1 µm
Beam energy 50 MeV
Slice energy spread <5 keV
Nominal charge 250 pC
Bunch length 5 ps
Beta-function (CC2 exit) 8 m
Dipole bending radius 0.958 m
Dipole length 0.301 m
Dipole angle 18 degrees
R56 -0.18 m

Beam-based alignment: Romanov, A., arXiv:1703.09757
[physics.acc-ph]
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Beam emittance summary
Electron beam emittance is now meassured with multislits X107

Reference: Data by D. Edstrom, A. Romanov, P. Piot

Charge, Q εnx , µm εny , µm

<1 pC 0.25 ± 0.1 0.3 ± 0.1
250 pC 0.56 ± 0.2 0.64 ± 0.2

• Emittance is optimized with
solenoid and σcath

• Not the lowest value yet
(takes time)

• Multislit at X118 will help in
studies
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Motivation and goals
Motivation: flat-beam generation, compression, and application to
the generation of tunable THz narrowband radiation.

Goals:
1 Produce canonical angular momentum dominated (CAM)

beams (pionereed at Fermilab A0)
2 Set up and optimize on the fly the round-to-flat beam

transformer (RTFB)
3 Generate extreme eigen-emittances ratio (> 300) (NEW)
4 Demonstrate compression of flat beam and investigate

emittance dilution during the process (NEW)
5 Demonstrate the use of flat beam to generate THz radiation

using the mask method (NEW)
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Why CAM beams?

1 Conventional application - electron cooling (Derbenev, Ya.,
UM-HE-98-04-A); proposed for JLEIC and other facilities

2 Emittance partitioning via flat beams (interest of ILC group)
3 Supressing microbunching instabilities in IOTA (collaboration

with R. Li, JLab)
4 Several possible radiation experiments (dielectric structures,

microundulators, channeling, etc.) can be done at FAST

CAM beams production at FAST is an important first step
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CAM conservation
Total canonical angular momentum

of a charged particle in symmetric magnetic field is conserved

L = γmr2θ̇ + 1
2eBz(z)r2 (1)

The norm of |~L| can be computed as L = |~r × ~p| = xpy − ypx .
Redefine as < L >= eB0zσ

2
0:

L ≡< L > /2γmc = const

where B0z is the field at the cathode, σ0 is the RMS spot at the
cathode and σ is the RMS beam size.

The particle total mechanical momentum ~p = pr r̂ + pθθ̂ + pz ẑ has
non-zero θ̂-component resulting in CAM-dominated beam.
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CAM-dominated beams

a) Emittance-dominated beam (εu)
b) CAM-dominated beam (magnetization L ≡< L > /2γmc)
c) Space charge dominated beam (space charge parameter K )

σ′′ + k2l σ −
K
4σ −

ε2u
σ3
− L

2

σ3
= 0,

kl = eBz(z)/2γmc is Larmor wavenumber, K = 2I/I0γ3 is the perveance,
I and I0 are the beam and Alfven current respectively
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4D-emittance, εu

Define 4D-emittance as ε4D =
√
|Σ|, then:

Σ0 =


σ2 0 0 κσ2

0 κ2σ2 + σ′2 −κσ2 0
0 −κσ2 σ2 0
κσ2 0 0 κ2σ2 + σ′2

 ,
where εu = σσ′, κ = L/σ2, ε4D =

√
ε2u + L2

Total 4D-emittance is conserved

det(JΣ− iε±I) = 0,

where I and J are respectively unit and symplectic unit matrix.
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Emittance ratio
Eigenemittances:

ε± =
√
ε2u + L2 ± L → ε+ ≈ 2L; ε− ≈

ε2u
2L ε+ε− = ε2u

Emittance ratio or “flatness”:

ε+
ε−

= 4L2
ε2u

= 1
p2z

e2B2
0z
σ20
σ′20

Example calculation: σ+ =
√
βx ,y ε+ → εu=2 µm → ε+ = 40µm,

ε− = 0.1µm → βx ,y = 8m, σ+ = 1.8mm and σ− = 0.09mm

Burov, A., Phys. Rev. E 66, 016503 (2002)
Kim, KJ., PRSTAB, 6, 104002 (2003).
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RTFB transfomer
Round-To-Flat Beam transformer

Q106 Q107 Q111

round	beam flat	beam

Leff

d2 d3
𝜀	"# 𝜀	$/&

Let the transformer be described by R ′RTFB = Q3D3Q2D2Q1, where

Di =
(
1 di
0 1

)
and Qi =

(
1 0
±qi 1

)
drift and quadrupole transfer

matrix respectively.
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Beam moments gymnastics

Consider three quadrupoles skewed at 45 deg. as
RRTFB = M−45R ′RTFBM45, where Mφ is rotation matrix

Let the RTFB transfomer transport be described by R =
(
A B
C D

)
A,B,C ,D - are 2× 2 matrices. Then beam matrix

Σi =
(

ΣXX ΣXY
ΣYX ΣYY

)
is transformed as Σf = RΣi R̃. Setting

ΣXY = 0 leads to:

AΣXX C̃ + AΣXY D̃ + BΣ̃XY C̃ + BΣYY D̃ = 0 (2)

Round beam → ΣXX = ΣYY = Σ0 and ΣC = −Σ̃XY
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Σ-matrix diagonalization
4× 4 matrix RRTFB can be also represented in 2× 2 block form as:

RRTFB =
(
A B
C D

)
=
(
a + b a − b
a − b a + b

)

or in non-rotated coordinate system:

R ′RTFB =
(
a 0
0 b

)

Then rewrite Eq. 2 as: AΣ0B̃ + BΣ0Ã + AΣC Ã + BΣ̃C B̃ = 0.

Guess solution A+ = A + B and A− = A− B such that
A− = A+S, where S some symplectic matrix

(can be defined by ΣXX , Y. Sun PhD thesis, FNAL (2005))
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RTFB solutions
FAST quadrupoles: K = (10.135× 40 Iq)/(1.8205× p [MeV /c]),

Leff = 17cm

q1 = ±
√
−d2(dT s21 + s11) + dT s22 + s12

d2dT s12
,

q2 = (d2 + d3)(q1 − s21)− s11
d3(d2q1s11 − 1) ,

q3 = d2(q2 − q1q2s12)− s22
d2(d3q2s22 + q1s12 − 1) + d3(s12(q1 + q2)− 1)

Numerical optimization can be used for correcting (q1, q2, q3) for
chromaticities and other second order effects
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S matrix definition
Matrix S can be defined as correlation:

Y = SX → S = ΣYXΣ−1XX

where X ,Y are 2×1 phase space vectors.
Alternatively, it can be defined as (at waist):

S = ± 1
|ΣXX |

JΣ−1XX = ∓1
ε

(
0 −σ2

κ2σ2 + σ′2 0

)

(Proof can be found in Y. Sun PhD thesis, FNAL (2005))

S = ∓
(

−α −β
(α2 + 1)/β α

)
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RTFB solutions: Example
Case : S =

(
0 −1.28

0.781 0

)

Model q1, m−1 q2, m−1 q3, m−1

Linear model 1.84 -1.2 0.23
Elegant simplex (1000 p.) 1.88 -1.39 0.20
MagnetOptimizer (10000 p.) 1.89 -1.41 0.20

−4 −3 −2 −1 0 1 2 3 4
x (mm)

−4

−3

−2

−1

0

1

2
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4

y
(m

m
)

• Linear model gives a good first guess
• Elegant simulations account for chromaticity
• MagnetOptimizer

(https://github.com/NIUaard/MagnetOptimizer)
based on thick-lens model

• Calculation can be done for bunch slice (include
analytical SRF cavity model)

• Note it is different from Thrane, E., et al, Proc.
of LINAC02
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Beam size evolution: Example
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Preparations during Run 2017
1 Optimized round beam emittance via multislit tool
2 Up to B0z ≈ 0.1 T at the cathode achieved
3 Chicane comissioned, CC1/CC2 total 35 MeV
4 X107 and X118 slits are not ready
5 Only pyro detector for CTR, no bolometer
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CAM generation (exp.)
Total canonical angular momentum

of a charged particle in symmetric magnetic field is conserved

L = eB0zσ
2

2mc ≈ 2.93 · 10−8[Gauss−1µm−1]B[Gauss]σ2[µm2]

B

B

F

F

M

M

Photocathode Bucking/Main	solenoid

Traditional RF-gun FAST RF-gun
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RF-Gun conditioning
• Vacuum activity with increasing Bucking solenoid current
• Activity decreases with time (conditioning)
• FAST RF-gun is able to run with IB < 300A

• On 11/17/2017 no vacuum activity at IB=250A
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MAM measurement algorithm

MAM → CAM → L → Σ → RTFB → ε+/ε−

Assumption:
Canonical Angular Momentum (CAM) is fully trasferred to
Mechanical Angular Momentum (MAM)

Two methods of measuring CAM:

1 Using multi-slits, observe relative shear of the beamlets
2 Using microlens arrays, produce multi-beam and observe

rotation (currently not available at FAST)
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MAM measurement (slits)
< L >= 2pz

σ21M sin θ
D , where pz is momentum, D is the drift length,

σ1 = (n − 1) ∗ d/5, M = σ2/σ1 - magnification factor
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MAM measurement (quad)

Σ0 =


σ2 < xx ′ > 0 L/2

< x ′x > σ′2 −L/2 0
0 −L/2 σ2 < yy ′ >

L/2 0 < y ′y > σ′2

 ,
< x2 >=< y2 >= σ2, < xy ′ >=< y ′x >= L/2 and

< x ′y >=< yx ′ >= −L/2
< xx ′ >=< yy ′ >=< x ′x >=< y ′y > and

< x ′2 >=< y ′2 >= σ′2.
If waist at “0”, < xx ′ >=< x ′x >=< yy ′ >=< y ′y >≡ 0. The
directly measurable elements : < x2 >,< y2 >,< xy >. The

beam moments matrix is transformed as:

Σ1 = RΣ0RT ,

where R is the linear transfer matrix.
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MAM measurement (quad) cont.
Normal quad

< x2 > = 2 < xx ′ > d(dq + 1) + d2σ′2 + σ2(dq + 1)2

< y2 > = −2 < yy ′ > d(dq − 1) + d2σ′2 + σ2(dq − 1)2

< xy > = Ld2q.

L =< xy > /d2q

Skew quad

< x2 > = d2(−Lq + q2σ2 + σ′2) + 2d < xx ′ > +σ2

< y2 > = d2(Lq + q2σ2 + σ′2) + 2d < yy ′ > +σ2

< xy > = dq
(
d(< xx ′ > + < yy ′ >) + 2σ2

)
L = | < x2 > − < y2 > |/2d2q
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Experimental results (Nov. 17)
First RTFB transformation at FAST (εx = 0.743µm,

εy = 30.9µm)
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Experimental results (Nov. 19)

Q=700pC

Q=1nC

Q=1.2nCHorizontal	flat	beam
(NEW)

X111

Optimized	flat	beam	at
low	charge

A. Halavanau, P. Piot Electron beam experiments at FAST in 2017 November 20, 2017 32 / 44



Flat beam generation

Impact-T	simulations

Solenoid	models

Analytical	guess

MagnetOptimizer

Load	in	the	machine

Manual	tuning

FlatBeamOptimizer

Emittance	quad	scan

Repeat	for	different	sol.

Find	minimum	emittance

MagnetOptimizer – minimize	off-diagonal	elements	of	covariance	matrix
FlatBeamOptimizer – minimize	ratio	of	histograms	at	the	screen

Better	way	– minimize	multislit width

Lowest emittance so far 0.2 µm at 50 pC and σ0 ≈ 1mm (close to
the limit of quad scan); room for optimization
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Experimental program

1 Magnetization L: measurement of L(B0z) and possibly vs
σcath [X107 is not ready to use]

2 Flat beam:
• Dynamics in the RFTB, demonstrate decorrelation process, use X111 and

X120 to demonstrate flat beam is produced
• Measure ε(L), quadrupole scan [X118 is not ready to use]
• Parametric study of ε versus energy chirp

3 Compressed flat beam: for the best flatness (smallest
emittance achieved) demonstrate the generation of a
compressed bunch.

• Michelson interferometer is operational, can quote a peak current in
addition to the emittance

• Measure ε versus energy chirp with compressor on (J. Zhu 2014 paper)
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Comparison and verdict

• Study in progress
• CAM beams were produced at FAST at 35 MeV
• Flat beams were produced with RTFB transformer
• Optimized flat beams were made at high charge Q = 1.2nC

Long-term goals
1 10 nm horizontal emittance (below thermal) at FAST
2 300 MeV flat beam acceleration
3 THz radiation generation using multislits in the chicane and

flat beams
4 Possible neural network RTFB optimizer (with A. Edelen)
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Argonne Wakefield Accelerator
72 MeV photoinjector + EEX beamline
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Microlens array setup

Microlens array	(MLA)	setup	at	AWA

Regular	beam Multi	beam Uniform	beam

AWA	UV	laser

Multi	
beam	at	
50	MeV

https://arxiv.org/abs/1707.08448 (accepted in	PRAB)

A. Halavanau, P. Piot Electron beam experiments at FAST in 2017 November 20, 2017 37 / 44



MLA laser shaper

Arbitrary laser transverse profile for different applications
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Emittance exchange setup

Gun
TDC1

TDC2
Linac section	(up	to	72	MeV)

Tank	1 Tank	2 Tank	3 Tank	4 Tank	5 Tank	6

D1

D4

D2 D3

Y1

EY1

EEX	section
Quadrupoles
(Q1	- Q4)

Quadrupoles
(Q5	– Q7)

Experiment	schematics:	(MLA	+	EEX)
Goal:	Combine	MLA	multi-beams	with	EEX	to	generate	bunch	trains

• MLA	setup	can	shape	laser	spot	to	create	multi-beams
• Additionally,	a	line	of	laser	dots	can	be	selected	

Benefits:
• Easy	to	implement
• Variable	array	size	/	spacing	/	rotation	angle
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Quadrupole matching
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Beamlet projection	upstream	of	the	EEX Resulting	bunch	train

Compression	ratio	is	found	to	be	1/3

Quadrupole	matching	(tunable	bunch	train)
• Select	line	of	beamlets (for	simplicity)
• Vary	quadrupole	upstream	of	the	EEX		
• Achieve	desired	separation	of	bunch	train
• Demonstrate	1:1	imaging	from	cathode	to	time-domain!

Separation	corresponds	to	
initial	multi-beam

separation	
at	the	cathode	in	time!

Sub-ps structure:	easy	to	
generate	THz	radiation
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MLA rotation + EEX

High-frequency	modulation	generation
Quadrupole	compression	is	limited	due	to	space-charge	effects	at	waist.	What	if	rotate	the	multi-beam?
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Vary	bunch	train	separation	via	simple	rotation!
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Conclusions

1 CAM beam generation is a byproduct with many outcomes
2 Ratio of 90 has been achieved; room for optimization
3 Lowest emittance below thermal (NEW)
4 FAST flat beam configuration can be used for numerous

radiation generation experiments
5 Analytical considerations for RTFB transfomer work for both

horizontal and vertical flat beams
6 Semi-automatic flat beam generation
7 Various tools and instruments developed and will be reused
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Thank you for your attention!
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