Electron beam experiments at FAST in 2017

A. Halavanau, P. Piot

November 20, 2017

Outline

1 Progress: Electron beam shaping and its applications

2 Canonical Angular Momentum (CAM) dominated beams at FAST

Theoretical background Round-to-flat transformation CAM beam generation Flat beam generation

3 Transverse beam shaping and emittance-exchange setup

Progress: Year 1

The Joint University-Fermilab Doctoral Program acceptance

<u>Main focus</u>: Longitudinal instabilities due to space-charge; longitudinal space-charge amplifier at FAST <u>Results</u>: Proposed experimental setup for LSCA at FAST

Papers:

Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation, NIMA, 819, (2016) 144-153

Conferences:

- Numerical study of three dimensional effects in longitudinal space charge impedance, IPAC2015, FERMILAB-CONF-15-225-APC
- 2 Numerical investigation of a cascaded longitudinal space charge amplifier at the Fermilab's Advanced Superconducting Test Accelerator, IPAC2015, FERMILAB-CONF-15- 226-APC
- Simulation of Cascaded Longitudinal Space Charge Amplifier at the Fermilab Accelerator Science and Technology (FAST) Facility, FEL2015, FERMILAB-CONF-15- 370-APC

Seminars:

APC seminar (Fermilab), CAD seminar (BNL)

Progress: Year 2

Main focus: 1.3 GHz SRF accelerating cavity transport measurement; microlens array laser shaping; channeling radiation <u>Results:</u> Confirmation of Chambers' model; comissioning of microlens array setup;

Papers:

- Analysis and Measurement of the Transfer Matrix of a 9-cell 1.3-GHz Superconducting Cavity, Phys. Rev. Accel. Beams 20, 4, 040102 (2017)
- 2 Spatial control of photoemitted electron beams using a microlens-array transverse-shaping technique, Phys. Rev. Accel. Beams 20, 103404 (2017)

Conferences:

- A Simple Method For Measuring The Electron-beam Magnetization, NAPAC2016, FERMILAB-CONF-16-460-APC
- Measurement Of The Transverse Beam Dynamics In A Tesla-type Superconducting Cavity, LINAC2016, FERMILAB-CONF-16-398-APC
- Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping Technique, IPAC2016, THPOW021

Seminars:

Budker seminar 1/2 (Fermilab)

Progress: Year 3 (current)

Main focus: CAM dominated and flat beams at FAST: EEX+MLA experiments **Results:** CAM beam generation at FAST (*in progress*); transverse cathode imaging in time domain

Papers:

1 Magnetized and Flat beam generation at FAST (in progress) (2017)

Tunable bunch train generation in EEX+MLA setup (in progress) (2017)

Conferences:

Magnetized and flat beam experiment at FAST, IPAC2017, FERMILAB-CONF-17-172-APC

Seminars:

Budker seminar 3 (Fermilab)

Miscellaneous projects

Future experiments

- THz radiation generation from compressed flat beams
- Arbitrary emittance partitioning (flat beam + EEX)
- Flat beam compression + acceleration (ILC type beam)

Computational geometry in beam physics:

 Application of Voronoi diagram to mask-based intercepting phase-space measurements, IPAC2017, FERMILAB-CONF-17-171-APC

Channeling radiation experiment:

Commissioning and First Results From Channeling Radiation At FAST, NAPAC2016, arXiv:1612.07358

CTR generation from transversely modulated electron beams:

 Coherent transition radiation from transversely modulated electron beams, FEL2017, FERMILAB-CONF-17-337-APC

and MORE...

IOTA/FAST facility

High-brightness 300 MeV electron beams (Elog: 120200)

- Linac completed in 2017, ring will be completed in 2018
- Collaboration with Northern Illinois University
- Several experiments performed during Run 2017

A. Halavanau, P. Piot

Electron beam experiments at FAST in 2017

FAST beamline

- FAST injector 1.3 GHz SRF linac (two CC \rightarrow 52 MeV + cryomodule \rightarrow 300 MeV)
- Charge range: 10 fC 3.2 nC per pulse (Cs:Te cathode)
- Nominal bunch length: 5 ps
- Includes chicane and skew-quadrupole adapter (RTFB)
- Detailed description of the facility: Antipov, S., *et al*, JINST, 12, T03002 (2017).

Beam parameters

Parameter	Value	Units	
Initial emittance (norm.)	<1	μ m	
Beam energy	50	MeV	
Slice energy spread	<5	keV	
Nominal charge	250	рC	
Bunch length	5	ps	
Beta-function (CC2 exit)	8	m	
Dipole bending radius	0.958	m	
Dipole length	0.301	m	
Dipole angle	18	degrees	
R ₅₆	-0.18	m	

Beam-based alignment: Romanov, A., arXiv:1703.09757 [physics.acc-ph]

Beam emittance summary

Electron beam emittance is now meassured with multislits X107

Sec

Emittance (Un-Morm) : 7.3995e-03 pm Dist to Soreen (L) : 7.379e+00 m Slit Width (w) : 4.000e-05 m Slit Spacing (s) : 4.000e-04 m Histogram Maplitude : 15.19 ArbU Histogram Madh : 2049 px Camera Bealurion : 9.300e-06 m/nx	Emittance & System Param	15:	
Dist to Screen (L) : 7.379e+00 m Sint Width (w) : 4.000e-05 m Sint Spacing (s) : 4.000e-04 m Histogram Maplitude : 15.19 ArbU Histogram Width : 2049 px Camera Resolution : 9.300e-06 m/nx	Emittance (Un-Norm)	÷	7.995e-03 µm
Slit Width (w) : 4.000e-05 m Slit Spacing (s) : 4.000e-04 m Histogram Amplitude : 15.19 ArbU Histogram Width : 2049 px Camera Resolution : 9.300e-06 m/nx	Dist to Screen (L)	÷.,	7.379e+00 m
Slit Spacing (s) : 4.000e-04 m Histogram Amplitude : 15.19 ArbU Histogram Width : 2049 px Camera Resolution : 9.300e-06 m/nx	Slit Width (w)	÷.,	4.000e-05 m
Histogram Amplitude : 15.19 ArbU Histogram Width : 2049 px Camera Resolution : 9.300e-06 m/px	Slit Spacing (s)	÷.,	4.000e-04 m
Histogram Width : 2049 px Camera Besolution : 9.30006 m/px	Histogram Amplitude	÷.,	15.19 ArbU
Camera Resolution : 9.300e-06 m/px	Histogram Width	÷.,	2049 px
	Camera Resolution	÷.,	9.300e-06 m/px

Reference: Data by D. Edstrom, A. Romanov, P. Piot

Charge, Q	$\epsilon_{\it nx}$, $\mu{\rm m}$	$\epsilon_{\it ny}$, $\mu{\rm m}$
<1 pC 250 pC	$\begin{array}{c} 0.25 \pm \textbf{0.1} \\ 0.56 \pm 0.2 \end{array}$	$0.3 \pm 0.1 \\ 0.64 \pm 0.2$

- Emittance is optimized with solenoid and $\sigma_{\textit{cath}}$
- Not the lowest value yet (*takes time*)
- Multislit at X118 will help in studies

Motivation and goals

<u>Motivation:</u> flat-beam generation, compression, and application to the generation of tunable THz narrowband radiation.

<u>Goals:</u>

- Produce canonical angular momentum dominated (CAM) beams (pionereed at Fermilab A0)
- Set up and optimize on the fly the round-to-flat beam transformer (RTFB)
- **③** Generate extreme eigen-emittances ratio (> 300) (**NEW**)
- ② Demonstrate compression of flat beam and investigate emittance dilution during the process (NEW)
- Demonstrate the use of flat beam to generate THz radiation using the mask method (NEW)

Why CAM beams?

- Conventional application electron cooling (Derbenev, Ya., UM-HE-98-04-A); proposed for JLEIC and other facilities
- ② Emittance partitioning via flat beams (interest of ILC group)
- Supressing microbunching instabilities in IOTA (collaboration with R. Li, JLab)
- Several possible radiation experiments (dielectric structures, microundulators, channeling, etc.) can be done at FAST

CAM beams production at FAST is an important first step

CAM conservation

Total canonical angular momentum of a charged particle in symmetric magnetic field is conserved

$$L = \gamma m r^2 \dot{\theta} + \frac{1}{2} e B_z(z) r^2 \tag{1}$$

The norm of $|\vec{L}|$ can be computed as $L = |\vec{r} \times \vec{p}| = xp_y - yp_x$. Redefine as $< L >= eB_{0z}\sigma_0^2$:

$$\mathcal{L} \equiv < L > /2\gamma mc = const$$

where B_{0z} is the field at the cathode, σ_0 is the RMS spot at the cathode and σ is the RMS beam size. The particle total mechanical momentum $\vec{p} = p_r \hat{\mathbf{r}} + p_{\theta} \hat{\theta} + p_z \hat{\mathbf{z}}$ has non-zero $\hat{\theta}$ -component resulting in **CAM-dominated beam**.

CAM-dominated beams

- a) Emittance-dominated beam (ϵ_u)
- b) CAM-dominated beam (magnetization $\mathcal{L} \equiv < L > /2\gamma mc$)
- c) Space charge dominated beam (space charge parameter K)

$$\sigma'' + k_I^2 \sigma - \frac{\kappa}{4\sigma} - \frac{\epsilon_u^2}{\sigma^3} - \frac{\mathcal{L}^2}{\sigma^3} = 0,$$

 $k_I = eB_z(z)/2\gamma mc$ is Larmor wavenumber, $K = 2I/I_0\gamma^3$ is the perveance, I and I_0 are the beam and Alfven current respectively

A. Halavanau, P. Piot

4D-emittance, ϵ_u

Define 4D-emittance as $\epsilon_{4D} = \sqrt{|\Sigma|}$, then:

$$\Sigma_{0} = \begin{pmatrix} \sigma^{2} & 0 & 0 & \kappa \sigma^{2} \\ 0 & \kappa^{2} \sigma^{2} + {\sigma'}^{2} & -\kappa \sigma^{2} & 0 \\ 0 & -\kappa \sigma^{2} & \sigma^{2} & 0 \\ \kappa \sigma^{2} & 0 & 0 & \kappa^{2} \sigma^{2} + {\sigma'}^{2} \end{pmatrix},$$

where $\epsilon_u = \sigma \sigma'$, $\kappa = \mathcal{L}/\sigma^2$, $\epsilon_{4D} = \sqrt{\epsilon_u^2 + \mathcal{L}^2}$ Total 4D-emittance is conserved

$$det(J\Sigma - i\epsilon_{\pm}I) = 0,$$

where I and J are respectively unit and symplectic unit matrix.

Emittance ratio

Eigenemittances:

$$\epsilon_{\pm} = \sqrt{\epsilon_u^2 + \mathcal{L}^2} \pm \mathcal{L} \rightarrow \epsilon_+ \approx 2\mathcal{L}; \epsilon_- \approx \frac{\epsilon_u^2}{2\mathcal{L}} \quad \epsilon_+ \epsilon_- = \epsilon_u^2$$

Emittance ratio or "flatness":

$$\frac{\epsilon_+}{\epsilon_-} = \frac{4\mathcal{L}^2}{\epsilon_u^2} = \frac{1}{p_z^2} e^2 B_{0z}^2 \frac{\sigma_0^2}{\sigma_0'^2}$$

Example calculation: $\sigma_+ = \sqrt{\beta_{x,y}\epsilon_+} \rightarrow \epsilon_u = 2 \ \mu m \rightarrow \epsilon_+ = 40 \mu m$, $\epsilon_- = 0.1 \mu m \rightarrow \beta_{x,y} = 8m$, $\sigma_+ = 1.8mm$ and $\sigma_- = 0.09mm$

RTFB transfomer

Round-To-Flat Beam transformer

Let the transformer be described by $R'_{RTFB} = Q_3 D_3 Q_2 D_2 Q_1$, where $D_i = \begin{pmatrix} 1 & d_i \\ 0 & 1 \end{pmatrix}$ and $Q_i = \begin{pmatrix} 1 & 0 \\ \pm q_i & 1 \end{pmatrix}$ drift and quadrupole transfer matrix respectively.

Beam moments gymnastics

Consider three quadrupoles skewed at 45 deg. as $R_{RTFB} = M_{-45}R'_{RTFB}M_{45}$, where M_{ϕ} is rotation matrix

Let the RTFB transfomer transport be described by $R = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ A, B, C, D - are 2 × 2 matrices. Then beam matrix $\Sigma_i = \begin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{pmatrix}$ is transformed as $\Sigma_f = R\Sigma_i \tilde{R}$. Setting $\Sigma_{XY} = 0$ leads to: $A\Sigma_{XX} \tilde{C} + A\Sigma_{XY} \tilde{D} + B\tilde{\Sigma}_{XY} \tilde{C} + B\Sigma_{YY} \tilde{D} = 0$ (2)

Round beam $\rightarrow \Sigma_{XX} = \Sigma_{YY} = \Sigma_0$ and $\Sigma_C = -\tilde{\Sigma}_{XY}$

Σ -matrix diagonalization

 4×4 matrix R_{RTFB} can be also represented in 2×2 block form as:

$$R_{RTFB} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} a+b & a-b \\ a-b & a+b \end{pmatrix}$$

or in non-rotated coordinate system:

$$R'_{RTFB} = egin{pmatrix} a & 0 \ 0 & b \end{pmatrix}$$

Then rewrite Eq. 2 as: $A\Sigma_0 \tilde{B} + B\Sigma_0 \tilde{A} + A\Sigma_C \tilde{A} + B\tilde{\Sigma}_C \tilde{B} = 0.$

Guess solution $A_+ = A + B$ and $A_- = A - B$ such that $A_- = A_+S$, where S some **symplectic** matrix (can be defined by Σ_{XX} , Y. Sun PhD thesis, FNAL (2005))

RTFB solutions

FAST quadrupoles: $K = (10.135 \times 40 I_q)/(1.8205 \times p [MeV/c]),$ $L_{eff} = 17 cm$

$$egin{aligned} q_1 &= \pm \sqrt{rac{-d_2(d_T s_{21} + s_{11}) + d_T s_{22} + s_{12}}{d_2 d_T s_{12}}}, \ q_2 &= rac{(d_2 + d_3)(q_1 - s_{21}) - s_{11}}{d_3(d_2 q_1 s_{11} - 1)}, \ q_3 &= rac{d_2(q_2 - q_1 q_2 s_{12}) - s_{22}}{d_2(d_3 q_2 s_{22} + q_1 s_{12} - 1) + d_3(s_{12}(q_1 + q_2) - 1)} \end{aligned}$$

Numerical optimization can be used for correcting (q_1, q_2, q_3) for chromaticities and other second order effects

S matrix definition

Matrix S can be defined as correlation:

$$Y = SX \to S = \Sigma_{YX} \Sigma_{XX}^{-1}$$

where X, Y are 2×1 phase space vectors. Alternatively, it can be defined as (at waist):

$$S = \pm rac{1}{|\Sigma_{XX}|} J \Sigma_{XX}^{-1} = \mp rac{1}{\epsilon} \left(egin{array}{cc} 0 & -\sigma^2 \ \kappa^2 \sigma^2 + {\sigma'}^2 & 0 \end{array}
ight)$$

(Proof can be found in Y. Sun PhD thesis, FNAL (2005))

$${\cal S}=\mp\left(egin{array}{cc} -lpha & -eta\ (lpha^2+1)/eta & lpha \end{array}
ight)$$

RTFB solutions: Example

$$Case: S = \begin{pmatrix} 0 & -1.28 \\ 0.781 & 0 \end{pmatrix}$$

Model	q_1 , m^{-1}	$q_2, \ m^{-1}$	q_{3}, m^{-1}
Linear model	1.84	-1.2	0.23
Elegant simplex (1000 p.)	1.88	-1.39	0.20
MagnetOptimizer (10000 p.)	1.89	-1.41	0.20

- Linear model gives a good first guess
- Elegant simulations account for chromaticity
- MagnetOptimizer (https://github.com/NIUaard/MagnetOptimizer) based on thick-lens model
- Calculation can be done for bunch slice (include analytical SRF cavity model)
- Note it is different from Thrane, E., et al, Proc. of LINAC02

Beam size evolution: Example

Preparations during Run 2017

- Optimized round beam emittance via multislit tool
- ② Up to $B_{0z} \approx 0.1$ T at the cathode achieved
- S Chicane comissioned, CC1/CC2 total 35 MeV
- **4** X107 and X118 slits are not ready
- **6** Only pyro detector for CTR, no bolometer

CAM generation (exp.)

Total canonical angular momentum of a charged particle in symmetric magnetic field is conserved

$$\mathcal{L} = \frac{eB_{0z}\sigma^2}{2mc} \approx 2.93 \cdot 10^{-8} [Gauss^{-1}\mu m^{-1}] B[Gauss]\sigma^2[\mu m^2]$$

Traditional RF-gun

FAST RF-gun

A. Halavanau, P. Piot

Electron beam experiments at FAST in 2017

RF-Gun conditioning

- Vacuum activity with increasing Bucking solenoid current
- Activity decreases with time (conditioning)
- FAST RF-gun is able to run with $I_B < 300$ A

• On 11/17/2017 no vacuum activity at I_B =250A

MAM measurement algorithm

 $\mathsf{MAM}
ightarrow \mathsf{CAM}
ightarrow \mathcal{L}
ightarrow \Sigma
ightarrow \mathsf{RTFB}
ightarrow \epsilon_+/\epsilon_-$

Assumption:

Canonical Angular Momentum (CAM) is fully trasferred to Mechanical Angular Momentum (MAM)

Two methods of measuring CAM:

- **1** Using multi-slits, observe relative shear of the beamlets
- Using microlens arrays, produce multi-beam and observe rotation (currently not available at FAST)

MAM measurement (slits)

 $< L >= 2p_z \frac{\sigma_1^2 M \sin \theta}{D}$, where p_z is momentum, D is the drift length, $\sigma_1 = (n-1) * d/5$, $M = \sigma_2/\sigma_1$ - magnification factor

Slit images at X111

MAM measurement (quad)

$$\begin{split} \Sigma_0 &= \begin{pmatrix} \sigma^2 &< xx' > 0 & L/2 \\ < x'x > & \sigma'^2 & -L/2 & 0 \\ 0 & -L/2 & \sigma^2 &< yy' > \\ L/2 & 0 &< y'y > & \sigma'^2 \end{pmatrix}, \\ &< x^2 > = < y^2 > = \sigma^2, < xy' > = < y'x > = L/2 \text{ and} \\ &< x'y > = < yx' > = -L/2 \\ < xx' > = < yy' > = < x'x > = < y'y > \text{ and} \\ &< x'^2 > = < y'^2 > = \sigma'^2. \end{split}$$
aist at "0", $< xx' > = < x'x > = < yy' > = < y'y > \equiv 0.$ Th

If waist at "0", $\langle xx' \rangle = \langle x'x \rangle = \langle yy' \rangle = \langle y'y \rangle \equiv 0$. The directly measurable elements : $\langle x^2 \rangle, \langle y^2 \rangle, \langle xy \rangle$. The beam moments matrix is transformed as:

$$\boldsymbol{\Sigma}_1 = \boldsymbol{\mathsf{R}}\boldsymbol{\Sigma}_0\boldsymbol{\mathsf{R}}^{\mathcal{T}},$$

where **R** is the linear transfer matrix.

A. Halavanau, P. Piot

MAM measurement (quad) cont.

Normal quad

$$< x^2 > = 2 < xx' > d(dq + 1) + d^2 \sigma'^2 + \sigma^2 (dq + 1)^2 \ < y^2 > = -2 < yy' > d(dq - 1) + d^2 \sigma'^2 + \sigma^2 (dq - 1)^2 \ < xy > = Ld^2q.$$

$$L = < xy > /d^2q$$

Skew quad

$$\langle x^{2} \rangle = d^{2}(-Lq + q^{2}\sigma^{2} + \sigma'^{2}) + 2d \langle xx' \rangle + \sigma^{2} \langle y^{2} \rangle = d^{2}(Lq + q^{2}\sigma^{2} + \sigma'^{2}) + 2d \langle yy' \rangle + \sigma^{2} \langle xy \rangle = dq \left(d(\langle xx' \rangle + \langle yy' \rangle) + 2\sigma^{2} \right)$$

$$L = | < x^2 > - < y^2 > |/2d^2q$$

Experimental results (Nov. 17)

First RTFB transformation at FAST ($\epsilon_x = 0.743 \mu m$, $\epsilon_y = 30.9 \mu m$)

Experimental results (Nov. 19)

Flat beam generation

MagnetOptimizer – minimize off-diagonal elements of covariance matrix FlatBeamOptimizer – minimize ratio of histograms at the screen Better way – minimize multislit width

Lowest emittance so far 0.2 μ m at 50 pC and $\sigma_0 \approx 1$ mm (close to the limit of quad scan); room for optimization

Experimental program

- Magnetization \mathcal{L} : measurement of $\mathcal{L}(B_{0z})$ and possibly vs σ_{cath} [X107 is *not* ready to use]
- Ø Flat beam:
 - Dynamics in the RFTB, demonstrate decorrelation process, use X111 and X120 to demonstrate flat beam is produced

 - Parametric study of ϵ versus energy chirp
- Ompressed flat beam: for the best flatness (smallest emittance achieved) demonstrate the generation of a compressed bunch.
 - Michelson interferometer is operational, can quote a peak current in addition to the emittance
 - Measure ϵ versus energy chirp with compressor on (J. Zhu 2014 paper)

Comparison and verdict

Study in progress

- CAM beams were produced at FAST at 35 MeV
- Flat beams were produced with RTFB transformer
- Optimized flat beams were made at high charge Q = 1.2nC

Long-term goals

- 10 nm horizontal emittance (below thermal) at FAST
- **2** 300 MeV flat beam acceleration
- THz radiation generation using multislits in the chicane and flat beams
- **4** Possible neural network RTFB optimizer (with A. Edelen)

Argonne Wakefield Accelerator

72 MeV photoinjector + EEX beamline

Microlens array setup

Microlens array (MLA) setup at AWA AWA UV laser LA LA. Fourier-Lens Flat-Top Thickness Array Size Multi beam Uniform beam Regular beam MICROLENS ARRAY (h - Pitri (f)(e v (mm) Multi beam at 50 MeV (g) (h) (i) -10 0 10 $-10 \quad 0$ 10 -10 0 10 -10 0 10 V 10 x (mm) x (mm) x (mm) x (mm) $\frac{20}{k_{\pi} (mm^{-1})}$ k. (mm⁻¹)

https://arxiv.org/abs/1707.08448 (accepted in PRAB)

MLA laser shaper

Arbitrary laser transverse profile for different applications

Emittance exchange setup

Experiment schematics: (MLA + EEX)

Quadrupole matching

Quadrupole matching (tunable bunch train)

- Select line of beamlets (for simplicity) ٠
- Vary guadrupole upstream of the EEX ٠
- Achieve desired separation of bunch train ٠
- Demonstrate 1:1 imaging from cathode to time-domain! ٠

EEX upstream

EEX downstream

MLA rotation + EEX

High-frequency modulation generation

Quadrupole compression is limited due to space-charge effects at waist. What if rotate the multi-beam?

MLA mounted on rotatable stage

Conclusions

- **①** CAM beam generation is a byproduct with many outcomes
- 2 Ratio of 90 has been achieved; room for optimization
- Output State Control (NEW) State Control (NEW)
- G FAST flat beam configuration can be used for numerous radiation generation experiments
- Analytical considerations for RTFB transfomer work for both horizontal and vertical flat beams
- 6 Semi-automatic flat beam generation
- **Ø** Various tools and instruments developed and will be reused

Credits

Acknowledgements:

- P. Piot (NIU, Fermilab) for supervising this research
- A. Valishev and V. Shiltsev (Fermilab) for valuable suggestions
- A. Romanov (Fermilab) for his help with beam alignment at FAST and useful comments
- J. Power (ANL, AWA), G. Ha (POSTECH) for their significant contribution to the MLA research
- D. Ratner and S. Li (SLAC) for interest in MLA applications
- A. Edelen (Fermilab, Colorado State for interest in optimizers and neural network flat beam generation

Thank you for your attention!