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ﬁf lNtroauction

* Convolutional neural networks have proven to be extremely
effective for event identification at the NOvVA experiment:
https://arxiv.org/abs/1604.01444

 MicroBoone has recently show us that liquid argon
detector readout is a similarly excellent domain for CNNSs:
https://arxiv.org/abs/1611.05531

* This leads to a natural next question. Can we take the art
based tools and expertise from the NOvVA CNN, named
CVN, and apply it on DUNE MC to rapidly produce a
competitive PID?
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ﬁWhy Deep Neural Networks”

 Measuring neutrino oscillations is all about measuring how
neutrinos change between ditferent lepton flavor states as
a function of distance traveled and neutrino energy.
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ﬁWhy Deep Neural Networks”

 Measuring neutrino oscillations is all about measuring how
neutrinos change between ditferent lepton flavor states as
a function of distance traveled and neutrmo energy.
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ﬁWhy Deep Neural Networks”

* Any oscillation analysis can benefit from precise
identification of the interaction in two ways:
e Estimating the lepton tlavor of the incoming neutrino.
o Correctly identitying the type of neutrino interaction, to
better estimate the neutrino energy, aka is it a quasi
elastic event or a resonance event?
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ﬁWhy Deep Neural Networks”

* Liquid argon detectors are also the perfect domain:
* Large ~unitorm volumes where spatially invariant
response is a benetit.

One, main, detector system.
How Does a LAFTPC Work " W'r_,e i'ane
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ﬁWhy Deep Neural Networks”

* Liquid argon detectors are also the perfect domain:
* Large ~unitorm volumes where spatially invariant
response is a benetit.
* One, main, detector system.

Run 3493 Event 41075, October 23*¢, 2015
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Deep Learning
for Event [dentitication
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Our Input

* Each “pixel” is the integrated ADC response in that time/space slice.

* Rescale adc to go from 0 to 255 and truncate to chars for dramatically reduced file
size at almost no loss of information. Final bin is overflow for >1000 adc.

* These maps are chosen to be 500 wires long and 1.2ms wide (split into 500 time
chunks).

* At this stage we have a very simple object in the art files associated with each
event, which we can keep for inference in ART later or export to a simple root
ntuple for training
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Our Input

* Each “pixel” is the integrated ADC response in that time/space slice.

* Rescale adc to go from 0 to 255 and truncate to chars for dramatically reduced file
size at almost no loss of information. Final bin is overflow for >1000 adc.

* These maps are chosen to be 500 wires long and 1.2ms wide (split into 500 time
chunks).

* At this stage we have a very simple object in the art files associated with each
event, which we can keep for inference in ART later or export to a simple root
ntuple for training
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ﬁf The Training Sample

1.2M events, only preselection requiring 100 hits split across any
number of planes.
e Labels are from GENIE truth, neutrino vs. antineutrino is ignored.
* No oscillation information, just the raw input distributions.
* 80% for training and 20% for testing.
e Currently we store this sample in levelDBs
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ﬁf The Training Sample

1.2M events, only preselection requiring 100 hits split across
any number of planes.

Labels are from GENIE truth, neutrino vs. antineutrino is
ignored.

No oscillation information, just the raw input distributions.
80% for training anmcj 20% for testing.
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Our Architecture

Based on the NOVA CNN, named CVN. Small edits to better
suit a larger input image and three distinct views.
The architecture
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ﬁf Training Performance

No sign of overtraining- exceptional training test set
performance agreement!
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Example CVN Kernels In Action:

Flrst Convolution
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Example CVN Kernels In Action:

First Inception Module Output
True NuMu DIS Event

Deeper in the
network, now after
the first inception —
module we can see
more complex
features have started
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Example CVN Kernels In Action:

First Inception Module Output
True NuE COH Event

Deeper in the
network, now after
the first inception
module we can see
more complex
features have started
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ﬁf INnference

After training the network using the caffe command line

interface, we test its basic behavior using an array of pycaffe

scripts.

calling the caffe c++ API:

Then we run inference as part of a regular ART module,

» https://cdcvs.fnal.gov/redmine/projects/dunetpc/repository/

andler.cxx

revisions/develop/entry/dune/CVN/art/CaffeNet

* |[t's much slower on a CPU, but still fast compared to most
Liquid Argon Reconstruction, and the power of grid

computing makes a huge difference.

This makes it relatively easy to directly compare to more

traditional tools, and to take advantage of the existing analysis

framework.

(\ Alexander Radovic


https://cdcvs.fnal.gov/redmine/projects/dunetpc/repository/revisions/develop/entry/dune/CVN/art/CaffeNetHandler.cxx
https://cdcvs.fnal.gov/redmine/projects/dunetpc/repository/revisions/develop/entry/dune/CVN/art/CaffeNetHandler.cxx

NuMu PID
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NuMu Selected Events,

Reconstructed Energy Spectra
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Nuk PID
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DUNE FD Events, With Oscillations,

Arbitrary Exposure

Nuk Selected Events, Reconstructed

Energy Spectra
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The Bottom Line
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ﬁ Workflow Summary

CVNEventDump

J
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TRAINING WORKFLOW

* Make training root files
» GRID jobs on 2/3 sample dataset

* Create LevelDBs/HDF5/LMDB

* Need to know your fraining
composition (manual currently)
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ﬁf Conclusions

* |t works!
* Pros:

* The Caffe c++ APl makes it relatively painless to include
in regular production, as longs as you have a valid UPS
oroduct (thanks Evan Niner & Lin Garen).

* Caffe’'s model zoo has lots of great network examples,
hugely helpful when getting started.

* Cons:

* Awkward workflow for getting training samples out,

* Hard to extend current file format beyond CNN for ID.

* Net result is it slowed R&D.
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