

Beyond 2D representations: track/shower separation in 3D

Ji Won Park Kazu Terao

11/14/17
SLAC National Accelerator Laboratory

INTRODUCTION

Motivations and goals

Long-term mission: build a full 3D reconstruction chain for LArTPC data using deep learning.

Why in 3D?

- Less optical illusion in interpreting 3D data.
- PID in 2D and track/shower separation in 2D have been done for MicroBooNE data. Pattern recognition in 3D is a natural extension from 2D.

Goal for the next ~18 minutes: report the results of training a semantic segmentation network to perform track/shower separation on 3D simulation data, as a working test case for pattern recognition in 3D.

Image classification task in 2D

Five-particle PID has been done: given a 2D image of a single particle, label it as a gamma ray, electron, muon, pion, or proton.

gave a happy score distribution.

*Muon classification score ~ high likely the algorithm thinks an image is a muon. Assigned high scores for muons vs. low scores for pions → confidence in prediction ☺

5-particle PID in 3D is a natural extension (achieved similar results as 2D)

Voxel = the 3D equivalent of *pixel*

METHODS

Our study: shower/track separation.

(Now 3 classes for track, shower, background instead of 5 particle classes) It has been done pixel-level in 2D using semantic segmentation.

Yellow: track, Cyan: shower

Yellow: track, Cyan: shower

The semantic segmentation network (SSNet)

"Written texts" input image

1. Downsampling path

Role: classification

A series of convolutions and downsampling which reduce the input image down to the lowest-resolution feature map.

Each downsampling step increases *field* of view of the feature map and allows it to understand the relationship between neighboring pixels.

"Written texts" feature map

"Human face" feature map

"Human face" input image

Role: pixel-wise labeling

~ reverse version of downsampling path.

A series of convolutions-transpose, convolutions, and upsampling which retrieve the original resolution of the image, with each pixel labeled as one of the classes.

The type of SSNet we used: **U-ResNet**

Feature tensor

The type of SSNet we used: U-ResNet = U-Net + **ResNet**

The type of SSNet we used: U-ResNet = **U-Net** + ResNet

Concatenations: a feature of U-Net.

We stack the feature maps at each downsampling stage with same-size feature maps at the upsampling stage.

~ "shortcut" operations to strengthen correlation between the low-level details and high-level contextual information.

Generating images for our training set

- 3D (voxelized)
- Each event (image) generated from truth energy deposition from LArSoft. With:
 - Randomized particle
 multiplicity 1~4 from a
 unique vertex per event,
 where the 1~4 particles
 are chosen randomly from
 5 particle classes.
 - Momentum varying from 100MeV to 1GeV in isotropic direction.
 - 128 x 128 x 128 voxels →
 1cm^3 per voxel (for quick first trial)

Input image: each voxel contains charge info.

Supervised learning: each training example is an ordered pair of *input image* and *true output image* (label).

Label image: each voxel is 0 (background), 1 (shower), or 2 (track).

Yellow: track, Cyan: shower

Defining the optimization objective (loss function)

Must weight the softmax cross entropy.

Typically, an image has 99.99% background (zero-value) voxels. Even among non-zero voxels, can have uneven number of track voxels vs. shower voxels.

So upweight the "rarer" classes in the image,

e.g. if the truth label has ratio of BG: track: shower = 99: 0.7: 0.3, incentivize the algorithm to do focus on shower most and BG least by using inverses as weights, 1/99: 1/0.7: 1/0.3.

Similarly, monitor algorithm's performance by evaluating accuracy only for non-zero pixels

Training

Optimizer: Adam

Choose batch size to be 8 images

- batch size ~ size of ensemble, so bigger the better BUT limited by GPU memory
- one iteration consumed 8 images

RESULTS

Non-zero pixel accuracy curve

Iterations

Non-zero pixel accuracy = correctly predicted nonzero pixels / total nonzero pixels Each iteration consumed 8 images.

Light orange: raw plot

Dark orange: smoothed plot

Loss curve

loss

Each iteration consumed 8 images.

Light orange: raw plot

Dark orange: smoothed plot

Truth label

Prediction

Truth label

Prediction

Truth label

Prediction

Summary and future work

We have trained U-Resnet to perform shower/track separation on 3D simulation data and report a training accuracy of ~96%.

To do:

- Explore smaller voxel sizes for higher precision
- Vertex finding (adding 1 more class to the classification task)
- Particle clustering (instead of pixel-level, instance-aware classification)

BACKUP SLIDES

Overall accuracy curve

accuracy_all

Why ResNet?

This <u>paper</u> demonstrates why ResNet is superior to vgg, etc. in semantic segmentation.