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Overview
• What is machine intelligence?
• How will we work at Fermilab?
• Near-term projects in generative models for fast simulation
• Training, workshops, and education
• Quantum machine learning and simulation
• Other miscellaneous projects and plans
• Conclusions
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What is machine intelligence?
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What is machine intelligence, and what do we do?
• Machine learning plus artificial intelligence.
- We focus on the application of advanced algorithms and architectures.
- Learning algorithms, adaptive control, GPUs, quantum computing, etc.

• We envision a dual role in service and research.
- Service: workshops, tutorials, community building (e.g. journal club), seminar series (with 

the specific aims of educating the lab community and bringing individuals to the lab that 
we feel have a high chance of forming partnerships), and projects that impact multiple 
experiments or groups in support of the lab’s mission.
• For example: fast simulation with generative models as part of the GeantV toolkit.

- Research: domain science by members of the group with the goal of sharing and 
spreading techniques and lessons learned.

- Ultimately the goal is to accelerate the process to better scientific results.
• New group (~September)
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Who are we?
• SCD core:
- Gabriel Perdue, Group Leader (MINERvA, DUNE, GENIE)
- Brian Nord (DES, LSST)
- Aristeidis Tsaris (NOvA)
- Looking to hire an RA, to be 50% MIG, 50% cosmology, supervised by B. Nord.
• Lab community (FNAL and University) we interact with:
- Alex Himmel (NOvA and DUNE) - working together on optical photon simulations with 

generative networks in DUNE
- Alex Radovic (NOvA and DUNE) - working on the seminar series and data/code 

infrastructure in DUNE
- Paddy Fox (Theory) - working on the seminar series
- Kiel Howe (Theory) - roundtable discussion group
- These people and several others have also contributed to the journal club.
• Looking for more active connections!
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What is machine learning?
• Machine learning is a way to write programs using data.
• There are many approaches to machine learning:
- Formal approaches are based on statistical modeling.
- There is a wide variety of algorithms covering a wide spectrum of complexity.

• Deep learning is a subfield of machine learning based on models that employ 
hierarchical representations to solve problems - for example, using a many-layered 
neural network. It has had very impressive success in a number of problem domains 
recently:
- Image analysis
- Sequence to sequence models
- Reinforcement learning

• Machine learning is not new. It is newly successful owing to the combination of larger, 
more accessible datasets and fast-enough computing. These two factors led to a 
Cambrian explosion of algorithmic innovation.
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What can we do with machine learning?
• Two broad approaches: supervised and unsupervised learning.
• Unsupervised learning involves feeding data to an algorithm with no objective function 

defining performance.
- The canonical example is clustering - searching for structure. Often useful for visualization.
- Unsupervised learning is (probably) closer to how the brain learns and we don't know how to exploit it yet.

• Supervised learning involves running an algorithm over data with an objective function 
and a mechanism for updating the algorithm to iteratively improve the performance.
- Note that we must define the input data and the objective function. Some algorithms attempt to learn these 

inputs and outputs for other algorithms, but the process here is fundamentally not creative.
- In principle, we could write an algorithm by hand to accomplish the same goal, but we may find it very 

challenging to achieve the same scaling performance and accuracy.
- It is a good rule of thumb in machine learning that larger datasets provide more marginal improvement in 

an algorithm than most algorithmic innovation. Another way of saying this is that it is much easier to solve 
many problems with a learning algorithm and a sufficiently large dataset than it is to derive a solution by 
hand.
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neuralnetworksanddeeplearning.com

2 Shuffling may be a bad idea in some contexts—for example, if you are working on time series data (such as
stock market prices or weather conditions). We will explore this in the next chapters.

>>> y[36000]
5.0

Figure 3-1 shows a few more images from the MNIST dataset to give you a feel for
the complexity of the classification task.

Figure 3-1. A few digits from the MNIST dataset

But wait! You should always create a test set and set it aside before inspecting the data
closely. The MNIST dataset is actually already split into a training set (the first 60,000
images) and a test set (the last 10,000 images):

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

Let’s also shuffle the training set; this will guarantee that all cross-validation folds will
be similar (you don’t want one fold to be missing some digits). Moreover, some learn‐
ing algorithms are sensitive to the order of the training instances, and they perform
poorly if they get many similar instances in a row. Shuffling the dataset ensures that
this won’t happen:2

MNIST | 83

5 You can use the shift() function from the scipy.ndimage.interpolation module. For example,
shift(image, [2, 1], cval=0) shifts the image 2 pixels down and 1 pixel to the right.

On the left is the noisy input image, and on the right is the clean target image. Now
let’s train the classifier and make it clean this image:

knn_clf.fit(X_train_mod, y_train_mod)
clean_digit = knn_clf.predict([X_test_mod[some_index]])
plot_digit(clean_digit)

Looks close enough to the target! This concludes our tour of classification. Hopefully
you should now know how to select good metrics for classification tasks, pick the
appropriate precision/recall tradeoff, compare classifiers, and more generally build
good classification systems for a variety of tasks.

Exercises
1. Try to build a classifier for the MNIST dataset that achieves over 97% accuracy

on the test set. Hint: the KNeighborsClassifier works quite well for this task;
you just need to find good hyperparameter values (try a grid search on the
weights and n_neighbors hyperparameters).

2. Write a function that can shift an MNIST image in any direction (left, right, up,
or down) by one pixel.5 Then, for each image in the training set, create four shif‐
ted copies (one per direction) and add them to the training set. Finally, train your
best model on this expanded training set and measure its accuracy on the test set.
You should observe that your model performs even better now! This technique of

104 | Chapter 3: Classification

MNIST figures from "Hands on Machine Learning with Scikit Learn and TensorFlow", from O'Reilly Media
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t-SNE Representation of Test 
Sample

Alexander Radovic Deep Learning at NOvA 36
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Truth labels, training sample subset.
t-SNE projection of final features to 2D.

3 Notice how animals are rather well separated from vehicles, how horses are close to deer but far from birds,
and so on. Figure reproduced with permission from Socher, Ganjoo, Manning, and Ng (2013), “T-SNE visual‐
ization of the semantic word space.”

Figure 1-8. Clustering

Visualization algorithms are also good examples of unsupervised learning algorithms:
you feed them a lot of complex and unlabeled data, and they output a 2D or 3D rep‐
resentation of your data that can easily be plotted (Figure 1-9). These algorithms try
to preserve as much structure as they can (e.g., trying to keep separate clusters in the
input space from overlapping in the visualization), so you can understand how the
data is organized and perhaps identify unsuspected patterns.

Figure 1-9. Example of a t-SNE visualization highlighting semantic clusters3

Types of Machine Learning Systems | 11

Figure from "Hands on Machine Learning with Scikit 
Learn and TensorFlow", from O'Reilly Media

t-SNE Representation of Test 
Sample

Alexander Radovic Deep Learning at NOvA 36

NC

νe QE

νµ QE

νµ DIS
νe DIS

Truth labels, training sample subset.
t-SNE projection of final features to 2D.

t-SNE Representation of Test 
Sample

Alexander Radovic Deep Learning at NOvA 36

NC

νe QE

νµ QE

νµ DIS
νe DIS

Truth labels, training sample subset.
t-SNE projection of final features to 2D.



FNAL PAC, 2017/11/16 Gabriel Perdue | The Machine Intelligence Group

Grounding expectations
• We (humans) tend to overestimate the impact of technology in the short term 

and underestimate the impact in the long term.
• Throwing a machine learning algorithm at your data is not going to improve 

your experiment!
• It is very likely many of the “killer apps” that we’ll be using 10 years from now, 

though, are things we haven’t thought of yet.
• People initially adapt new tools as solutions to current problems, but 

eventually we will apply these techniques to questions that are predicated on 
the existence of fast, scalable learning tools.
• For our purposes, “AI” is meant in the sense it is most broadly used today: 

automated tools for decisions and analysis (“intelligence”) at scale.
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Great results in the experiments
• There is a lot of fantastic work going on in the experiments.
• Our goal is to facilitate communication between different groups, identify 

needs and opportunities for R&D, seed some of the needed R&D, and help to 
build environments and workflows that support machine learning efforts.
- Interface to SCD frameworks, advocate, and inform SCD about new developments.
- Develop and support common-purpose workflows.
- Advice and consulting on tools and facilities (e.g. HPC centers).
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Generative models for simulation
• Future simulation needs (e.g., HL-LHC) appear 

likely to outstrip even optimistic resource 
projections.
- Requires creative, "outside the box" thinking.

• Shower libraries face problems rooted in 
incompleteness and heavy data access.

• Generative models offer a potentially incredible 
speed-up along with better flexibility by modeling 
very complex distributions.

• The MIG is joining an effort in the GeantV 
collaboration to deliver a fast simulation program 
based on deep generative models.
- Clearly benefits both the Intensity and Energy 

Frontiers, and lessons learned should benefit 
cosmological simulations as well.
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Can obtain an evaluation time speed up of 100,000x on GPU!

YaleComputing

LAGAN and CaloGAN: 
Generative Adversarial Networks for 

Jet Images and Calorimeter Simulation

Michela Paganini*, Luke de Oliveira, Ben Nachman

Yale

DS@HEP 2017

But that’s not enough… !
● Scale of industry at or above R&D

– Commercial clouds offering increased value 
for decreased cost compared to the past
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● High Energy Physics computing will need 10-100x 
current capacity

B. Holzman, SC17
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Calorimeter Images

• Challenges: 

- sparsity 

- dynamic range 

- location specificity 

• Advantages: 

- compositionality 

- quantifiable properties 
—> available projections 
of data distributions onto 
set of physical 1 or 2D 
manifolds

3x96

12x12

12x6

• Main idea: closer and closer to raw detector 
output

Learning Particle Physics by Example:
Generative Adversarial Networks for Simulation

! @lukede0  
" lukedeo@vaitech.io 
#  https://ldo.io

Luke de Oliveira 
Founder, Vai Technologies 

Visiting Researcher, Lawrence Berkeley National Lab

arXiv:1701.05927 
arXiv:1705.02355

with 
Michela Paganini and Ben Nachman

Yale, LBNL                      LBNL 
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ACAT 2017

Generative Adversarial Networks (GAN)

tries to tell fake/real

Turn generative modeling into a  
two player, non-cooperative game.

tries to produce real looking samples
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DL engine for fast simulation in GeantV

´ 3d GAN represent first proof of concept
´ We aim at a generic fully configurable tool 

´ Optimal network design depends on the problem to solve
´ Embedded algorithms for hyper-parameters tuning and meta-

optimization
´ Studying parallelization on clusters

29

Generative models 
for fast simulation
Sofia Vallecorsa*
for the GeantV project

ACAT 2017
21-25 August 2017
University of Washington, Seattle* Gangneung-Wonju U. & CERN

Generative models 
for fast simulation
Sofia Vallecorsa*
for the GeantV project

ACAT 2017
21-25 August 2017
University of Washington, Seattle* Gangneung-Wonju U. & CERN

Qualitative Performance (1)

GEANT GEANT GEANTGAN GAN GAN

Yale

LAGAN and CaloGAN: 
Generative Adversarial Networks for 

Jet Images and Calorimeter Simulation

Michela Paganini*, Luke de Oliveira, Ben Nachman

Yale

DS@HEP 2017
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Optical photons at DUNE - partner with GeantV
• Optical photon simulation is prohibitively expensive for use in the standard 

simulation chain.
• The current approach to solving this issue is library look-up. But, this requires 

a lot of memory and access to very large table files.
• Can we improve the situation with a generative model?
• Potentially fewer concerns about leakage and splash back type effects. 

However, many different “vantage points” to simulate. Can the model learn to 
extrapolate between subsets of the voxels during training?
• We are tackling this problem in a partnership with the GeantV group.
- Avoid replicating work by bootstrapping from their efforts so far.
- Make important contributions to a framework and project that serves all of HEP.
- Apply the techniques on novel datasets that support FNAL's flagship experiment.
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Simulating&Optical&Transport
• At%right,%a%2D%slice%from%the%
Photon%Library%for%a%single%
photon%detector.

Visibility

7

Simulating&Optical&Transport

Visibility
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Photon%Library%for%a%single%
photon%detector.
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Simulating&Optical&Transport

Visibility

• At%right,%a%2D%slice%from%the%
Photon%Library%for%a%single%
photon%detector.
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Education: journal club, roundtable, and seminars
• We run a monthly meeting where we discuss papers chosen by presenters, 

usually with some prior discussion in the HEPMachineLearning Slack channel.
- One or two individuals volunteer to present a paper - might be "foundational" or very recent 

and technical (sometimes we have both in one meeting).
• We recently began a new ~monthly community-driven effort to discuss 

technical problems in an informal setting.
- The goal is to discuss technical implementation details with a wide audience and with a very 

low bar for participation - we don't ask people to prepare presentations, etc.
• We also run a ~monthly seminar series bringing academic and industry-based 

researchers in deep learning and other advanced computing techniques to the 
laboratory.
- We place a special emphasis on individuals we think are likely to collaborate with groups at 

the lab.
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Seminar success stories
• Catherine Schuman, ORNL
- Spoke about developments in neuromophic computing and demonstrated neural spiking 

networks trained by evolutionary algorithms that are competitive with deep neural 
networks with a tiny fraction of the number of neurons and power consumption.

- Now working with MINERvA on classification/localization problems, and HEPTrkx on 
neuromorphic approaches to track finding (possible alternative to FPGA based hardware 
for triggering at LHC, etc.).

• Abhinav Vishnu, PNNL
- Spoke about scaling and performance of deep learning algorithms on HPC facilities, has 

worked a bit with DES and MINERvA (we are all looking for grant/funding application 
opportunities).

• Nicholas Rubin, Rigetti Computing
- Spoke about quantum simulation and hybrid quantum-classical algorithms.
- In discussions about possible collaborative ventures.
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Quantum machine learning
• Recently, researchers demonstrated 

some success using quantum 
annealing to build a binary signal/
background classifier on a HEP dataset 
(Mott etc always, Nature vol 550, 375 
(2017)).
- Powerful proof-of-principle inspiration to 

begin investing intellectual effort.
• We are integrating into the lab's 

quantum information initiative to 
explore new applications with industrial 
partners (Lockheed Martin, Google).

18

Establishing a Testbed
• Our HEP computing 

model matches 
Google’s cloud offering
○ Bid awarded!

• Excellent way to make 
QC resources available 
to HEP scientists 

LETTERRESEARCH
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a signal efficiency εS we use the strong classifier sampled from the 
annealer with the maximum background rejection rB. We construct 
such compound classifiers for simulated and quantum annealing using 
excited states within a fraction f of the ground-state energy Eg—that is, 
all {si} such that H({si}) <  (1 −  f)Eg (note that Eg <  0). Simulated anneal-
ing is used as a natural comparison to quantum annealing on these fully 
connected problems.

In our experiments, quantum annealing struggles to find the true 
minimum of the objective function. This is probably a consequence 
of the fact that the current generation of D-Wave quantum annealers 
suffers from non-negligible noise on the programmed Hamiltonian. 
The problem of noise is compounded by the relatively sparse graph, 
which requires a chain of qubits to embed the fully connected  logical 
Hamiltonian. In our case, 12 qubits are ferromagnetically coupled 

to act as a single logical qubit. We therefore study and interrogate 
 current-generation quantum annealers and interpret their performance 
as a lower bound for the performance of future systems with lower 
noise and denser hardware graphs.

In Fig. 3 we plot the ROC curves illustrating the ability to discrimi-
nate between signal and background for each algorithm, with f =  0.05 
and training datasets with 100 or 20,000 events. We observe a clear 
separation between the annealing-based classifiers and the binary- 
decision-tree-based XGB and DNN classifiers, with the advantage of 
the annealers appearing for small training datasets, but  disappearing 
for the larger datasets. In Fig. 4 we plot the area under the ROC 
curve for each algorithm, for training datasets of various sizes and 
f =  0.05 (the largest value we used). An ideal classifier would have 
an area of 1. We find that quantum and simulated annealing have 
comparable performance, implying high robustness to approximate 
solutions of the training problem. This feature appears to general-
ize across the domain of QAML applications (Li, R. et al., submitted  
manuscript). Here the asymptotic performance of the QAML model is 
achieved with just 1,000 training events, and thereafter the algorithm 
does not benefit from additional data. This is not true for the DNN or 
XGB. A notable finding of our work is that QAML has an advantage 
over both the DNN and XGB when training datasets are small. This is 
shown in Fig. 5 in terms of the integral of the true negative differences 
over signal efficiency for various ROCs. In the same regime of small 
training datasets, quantum annealing develops a small advantage over 
simulated annealing as the fraction of excited states f used increases, 
saturating at f =  0.05. However, the uncertainties are too large to draw 
definitive conclusions in this regard. In the regime of large training 
datasets, simulated annealing has a small advantage over quantum 
annealing, to a significance of approximately 2σ.

In our study we have explored QAML, a simple method inspired by 
the prospect of using quantum annealing as an optimization technique 
for constructing classifiers, and applied the technique to the  detection 
of Higgs decays. The training data are represented in a compact 
 representation of O(N2) couplers and local biases in the Hamiltonian 
for N weak classifiers. The resulting strong classifiers perform compa-
rably to the state-of-the-art standard methods that are currently used in 
high-energy physics, and have an advantage when the training datasets 
are small. The role of quantum annealing is that of a subroutine for 
sampling the Ising problem that may in the future have advantages 
over classical samplers, either when used directly or as a way of seeding 
classical solvers with high-quality initial states.

QAML is resistant to overfitting because it involves an explicit 
linearization of correlations. It is also less sensitive to errors in the 
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Figure 4 | Area under the ROC curve (AUROC) for the annealer-trained 
networks with f = 0.05, the DNN and XGB. Results shown are for the 
36-variable networks at λ =  0.05. As in Fig. 3, the solid lines correspond 
to quantum (green) or simulated (blue) annealing, and dotted lines to the 
DNN (red) or XGB (cyan). The vertical lines denote 1σ error bars, defined 
by the variation over the training sets (grey) plus statistical error (green); 
see Supplementary Information section 6 for details of the uncertainty 
analysis. Whereas the DNN and XGB have an advantage for large training 
datasets, we find that the annealer-trained networks perform better for 
small training datasets. The overall performance of QAML and its features, 
including the advantage at small training-dataset sizes and saturation of 
the AUROC at approximately 0.64, are stable across a range of values of 
λ. An extended version of this plot, for various values of λ, is shown in 
Supplementary Fig. 2.
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Figure 5 | Difference between the AUROCs for different algorithms.  
a, Quantum annealing versus the DNN (QA −  DNN). b, Quantum 
annealing versus XGB (QA −  XGB). c, Quantum versus simulated 
annealing (QA −  SA). In all cases, the difference is shown as a function of 
training-dataset size and fraction f above the minimum energy returned 

(the same values of f are used for quantum and simulated annealing in c). 
Formally, we plot ∫ ε ε ε−r r[ ( ) ( )]di

0
1

B
QA

S B S S, where rB is the maximum 
background rejection, i ∈  {DNN, XGB, SA} and εS is the signal efficiency. 
The vertical lines denote 1σ error bars. The large error bars are due to 
noise on the programmed Hamiltonian.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Mott et al.
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Quantum simulation
• Simulating quantum systems is likely one of the first applications of quantum 

computing that will yield meaningful performance advantages over classical 
computing.
• While quantum simulation is not necessarily a machine learning problem 

(although there are obvious applications for various flavors of Boltzmann 
Machines to function both as classifiers and as generative models), working 
on these problems helps us to learn about how to work with quantum 
computers.
• We are partnering with Los Alamos (J. Carlson, A. Roggero, S. Pastore) and 

U. South Carolina (A. Baroni) to develop a neutrino-nucleus scattering 
problem using a Hamiltonian with many realistic features.
• We plan on deploying the algorithm on Google hardware this coming Spring.
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Other considerations/projects
• Looking at reinforcement learning for accelerator controls.
- Potentially large cost savings.
- Experience in adaptive control useful on other projects (grid computing, building control, 

etc.).
- Trying to build team skill set for this work.
• More public exposure/outreach.
- ML is very hot right now.
- We are doing interesting, big science with ML at the lab (Higgs physics, new physics 

searches at the LHC, CP violation searches at the long baseline neutrino program, sterile 
neutrino searches at the short baseline program).

- We should be presenting at industry events (e.g. AWS re:invent, O’Reilly AI, etc.) to raise 
the profile of the lab. This will help with ML recruiting, help provide exposure to industry for 
postdocs and students, etc.
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Conclusions
• The Machine Intelligence Group aims to support efforts in machine learning 

and advanced algorithms across the entire lab community through improved 
communication, education, advocacy, and direct involvement in broadly 
impactful projects.
• Our goal is to be a center for activities that cut across "frontier boundaries" 

and leverage the resources at our disposal by plugging into common 
frameworks and mechanisms whenever possible.
• We are a bridge to the outside world of research in these topics, and bring 

interesting potential collaborators to the lab to interface with lab staff and 
users.
• We are always looking to partner on interesting new projects (e.g., adaptive 

controls via reinforcement learning as a HEPCloud decision engine, etc.).

21
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Thank you for listening!
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Core SCD group
• Gabriel Perdue, Associate Scientist, SCD, Group Leader (MINERvA, DUNE, 

GENIE)
- 0.4 FTE
- Also leads the FNAL GENIE group
• Brian Nord, Associate Scientist, SCD (DES, LSST)
- 0.25 FTE
- Joint appointment at the University of Chicago with a focus on scientific communication
• Aristeidis Tsaris, Research Associate, SCD (NOvA)
- 0.2 FTE
- Protecting a focused, coherent research program aimed at success at the next level is 

our primary focus when deploying effort.
• Looking to hire an additional RA, to be 50% MIG, 50% cosmology, 

supervised by B. Nord.
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Education: workshops and tutorials (planning underway)
• We plan on executing or facilitating a series of tutorials and workshops 

focused on using a developing deep learning applications.
• Our group has broad expertise across a variety of technologies:
- TensorFlow
- Theano
- Keras as a frontend (backends include TensorFlow, Theano, and new libraries like 

PlaidML)
- Caffe
- Scikit-learn
- XGBoost
• Additionally, SCD is well-equipped to provide VMs for tutorial software 

environemnts.

24


