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MINERVA Overview

- Scintillator-based neutrino detector in
NuMI beam at Fermilab

- Goals include:
 Inclusive and exclusive measurements of
signals and backgrounds in oscillation
measurements

« Study of nuclear effects via
measurements on many nuclei in the
same beam
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MINERVA Motivation
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................... - * The systematics that matter here are uncertainties
— on predicted energy in far detectors

* We will need unprecedented precision in
models of beams, physics, and detectors
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MINERVA Motivation
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* MINERVA is needed in addition to near detectors:

Data from MINERVA and other
experiments sets the prior
uncertainties on model parameters
In near/far detector fits.

But most crucially, these data help
us understand

in oscillation fits in the first place

Our understanding of appropriate
degrees of freedom in oscillation fits
has rapidly evolved in the last few
years, based in part on MINERVA
data
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MINERVA Motivation

5

10 Nov 2017

Dr. Peter Shanahan Prof. Mark Messier
Neutrino Division/Neutrino Physics Department Department of Physics
Fermilab Indiana University
NOvVA Co-Spokesperson NOvVA Co-Spokesperson
Dr . Nigel Lockyer, Director May 24, 2016
Fermilab

Batavia, IL 60510

Dear Nigel,

We understand from the MINERVA spokespersons that there are discussions underway that impact the
proposed future cross-section measurement program in the NuMI beam, and that our recent experience
with first measurements of neutrino oscillations using the NOvA detectors might provide some useful
background information on the relationship between measurements of neutrino cross-sections and
extraction of fundamental neutrino properties.

As you may recall, the initial data seen in the NOvVA near detectors showed a large (14%) discrepancy in
the hadronic component of neutrino charged-current interactions. This difference was not wholly
unexpected as NOVA operates in a transitional energy region (1 - 3 GeV) where several interaction
processes (quasi-elastic, resonant, deep inelastic) contribute in nearly equal amounts. Uncertainties in the
hadronic system resulted in a 7% uncertainty in our initial measurements of neutrino energy. This
uncertainty would have been a limiting factor in the measurements of $in?26,; and Am?y; using muon-
neutrino disappearance had they gone uncorrected. Likewise, uncertainties in the modeling of the
hadronic components of electron-neutrino events caused us to assign a 14% uncertainty to the efficiency
with which we find electron-neutrino charged-current candidates at the far detector which directly
impacts our ability to map the electron-neutrino appearance rates to the oscillation parameters sin’6,;,
sin’8,3, cp and neutrino mass hierarchy.

Over the past year, NOvA has worked to understand this discrepancy, homing in on the understanding of
neutrino cross-sections as one of the most likely causes. Crucial to these investigations were, of course,
our own high statistics near detector data, but we also relied on external measurements of quasi-elastic
scattering, resonant production, and deep inelastic scattering by the MINERVA collaboration. Having
those data available, and an engaged community of physicists who understood those data, enabled us to
converge on a solution to the hadronic energy differences much faster that we would have otherwise.
Knowing that our own data shows trends consistent with the MINERvVA measurements gives us
confidence in our solution.

At the Neutrino conference in July we expect to show updated results where the uncertainties in hadronic
energy, neutrino energy, and electron neutrino selection efficiency uncertainties have been reduced to 5%
(from 14%), 5% (from 7%), and ~2% (from 14%) which, when combined with improved reconstruction
techniques, will improve the physics reach of our results by much more than what would have been
projected with the increased statistics only.

Sincerely,

Peter Shanahan and Mark Messier
NOvA Co-spokespersons

* MINERVA has support from oscillation experiments:

Prof Tsuyoshi Nakaya
l : 2 Kyoto University
Dr Morgan O. Wascko

Imperial College London

Dr Nigel Lockyer
Director, Fermi National Accelerator

cc: Dr Joseph Lykken, Dr Stephen Geer; Prof Kevin McFarland, Dr Deborah Harris

Wednesday, 8 June 2016

Dear Nigel:

We are writing in support of MINERVA’s antineutrino data runs and the CAPTAIN-MINERVA project.

T2K has made use of Fermilab neutrino cross-section data in every oscillation analysis from its beginning.
Initially it was MiniBooNE and SciBooNE data sets, but, as they have become available, multiple
MINERVA results are now incorporated into T2K’s external data fits. T2K has its own near detectors, both
on and off-axis. Even with these, the external cross-section data play a critical role in selecting neutrino-
scattering models for the oscillation analysis and in tuning/restricting parameters within those models.

The fact that these measurements are made in neutrinos and antineutrinos, at energies and on nuclei beyond
those used by T2K in its oscillation analysis sample, is actually a strength of the datasets, in that it helps to
test models in ways that T2K cannot do by itself. This stems from the fact that each neutrino beam is
inherently wide-band in energy with respect to the nuclear effects that drive the systematic uncertainties of
neutrino oscillation analyses. Accordingly, T2K expects to benefit from more antineutrino results from
MINERVA.

Similarly, CAPTAIN-MINERVA data, because it offers a unique opportunity to compare measurements in
two capable detectors with nuclei of significantly different size and density, should be beneficial to the T2K
program of using MINERVA data to constrain nuclear models.

Having the legacy datasets from MiniBooNE and SciBooNE is valuable, but there is additional value from
a contemporary experiment. There is active feedback between MINERVA and T2K that has resulted in new
analyses being completed on MINERVA which then are applied to the T2K oscillation analysis. The
coherent pion and low recoil ("2p2h") analysis are good examples of this.

The information provided by MINERVA has been important in not only formulating the systematic
uncertainties for the oscillation results, but has also actively helped T2K reduce them to levels below what
was foreseen in the original proposal. New data sets with antineutrinos and argon nuclear targets will
certainly continue, and enhance, these benefits.

Best regards,

T. Nakaya and M. Wascko
T2K Spokespersons
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MINERVA Low Energy Analysis Program
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Electron Energy (GeV)

RVA is building a large bank of data for model tuning:
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MINERVA Low Energy Analysis Program

* One example:

« Several experiments have indicated Phys. Rev. Lett. 116, 071802 (2016)
evidence for neutrino interactions x10°
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in electron scattering)
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* Models of these interactions are \ N
beginning to appear 88 _ 0.40 < q,/GeV <0.50 |t 0.50 < q,/GeV <0.60 | 0.60 < q,/GeV < 0.80
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-
-

* MINERVA charged-current inclusive
data indicates that, while these
models modestly improve data/
model agreement, we must tune 8

these models by ~60% to achieve _
good fits Reconstructed Hadronic Energy (GeV)
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multinuclear “2p2h” model, did

not exist until ~2 years ago
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MINERVA Low Energy Analysis Program

* Different analyses tell a consistent story Y [ eerininary paca zom: 5,300
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* When we look at other channels and other variables, we see corroborating
evidence that current 2p2h models need significant enhancement

* Example above shows energy near vertex in neutrino quasi-elastic
candidates

 Similar behavior seen in antineutrino mode data
* NOVA has adapted this analysis technique for their interaction model
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Wh

Neutrinos/m?/GeV/POT

y Are We Here?

* All of the analyses on previous
slides use our “low energy” data
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Understanding differences between neutrino / antineutrino cross sections is
exceptionally important for measurements of CP violation
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Why Are We Here?

3.4e20 12e20 By the summer 2018
shutdown, we expect to
increase our ME exposure to
2e20 3.7e20

4— ~8e20 in antineutrino mode

 In December 2014 we submitted a document to the PAC entitled “MINERvVA’s Medium

Energy Physics Program”
* We requested 12e20 in antineutrino mode, which would require running in part of

FY2019
* We are speaking to you today to reiterate that request for antineutrino mode running

with more analyses considered
* We provided a new document to you last month; the following slides summarize the

analyses described there

2= Fermilab
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Why 12e20?

\ Our initial 12e20 request was
based on achieving comparable
statistical and systematic errors
on Deep Inelastic Scattering
(DIS) cross section ratios on

different nuclei

CERN COURIER

Apr 26,2013

The EMC effect still puzzles after 30 years

Thirty years ago, high-energy muons at CERN revealed
the first hints of an effect that puzzles experimentalists

and theorists alike to this day.
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Bjorken x

 MINERVA is the first neutrino experiment to
address a
(the “EMC Effect”) on neutrinos, and
the more recently discovered behavior of
shadowing
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Why 12e207?
Rev. Mod. Phys. 84, 1307 (2012)

» Understanding the neutrino 3"4
EMC effect, and Deep "5-’1-
Inelastic Scattering in general, & 1
is important for DUNE 30
50,6
* Will be the dominant source 30_4
of events at the falling edge @
of the focusing peak, and the 5
high energy tail "0
» MINERVA is the only DUNE Peak
modern experiment with high >
statistics at these energies MINERvVA ME Peak

T :
3¢ Fermilab
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Why 12e20?

* As MINERVA has developed our Medium Energy analysis program, it
has become clear that 12e20 will enable many other analyses
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* 12e20 is particularly critical for our comparisons of cross sections
across different nuclei, which use lower mass targets than our cross
section measurements on scintillator

$& Fermilab
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Importance of A-Dependance

* Measurements on different nuclei are critical for disentangling models
of neutrino interactions on nucleons and the effect of the nuclear

environment.
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Medium Energy Analysis Strategy

* While accumulating our full neutrino-mode exposure, we have worked to
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tackle many challenges that come with the intense ME-beam:
- For instance: MINERVA sees many neutrino events in a typical NuMI spill
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Medium Energy Analysis Strategy

* While accumulating our full neutrino-mode exposure, we have worked to
tackle many challenges that come with the intense ME-beam:
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Medium Energy Analysis Strategy

* While accumulating our full neutrino-mode exposure, we have worked to
tackle many
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Medium Energy Analysis Strategy

* While accumulating our full neutrino-mode exposure, we have worked to
tackle many
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Machine Learning for ME

* We have begun to incorporate machine learning into our
reconstruction, first to deal with events such as this one:
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Real vertex is here; track-based reconstruction of the vertex totally fails, but the machine
learning algorithm successfully finds it
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NuMI Flux for ME

* A major concern for our ME data program:

o 25510 - Data/Simulation discrepancy
‘g 205 +oma consistent with a
s [ & | * Efforts have been ongoing for
- more than a year to search for
mf possible culprits
- * Those efforts continue
°f * But in order to begin ME
e - publication, we have also
0 2 4 6 8 10 12 14 16 18 20

_ developed an alternate plan
Neutrino Energy [GeV]
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NuMI Flux for ME

* A major concern for our ME data program:
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* We have fit our low-nu data (a
sample with low model-related
shape uncertainties)

* Assume that the problem is

similar to one of our known
focusing effects

* First measurements will focus on
processes insensitive to flux

* Target ratios, nu/nubar ratios,
shape measurements
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ME Analysis Progress: Neutrino Pion Production

* In parallel with the reconstruction + flux work, we continue to develop
many ME analyses, e.g. pion production across nuclei:

MINERvA Preliminary
POT Normalized
Data POT: 8.55E+19
MC POT: 1.41E+20

x10°

2 2 2 + con

&) O 60f &)

p— — —

< = =

~ ~ ~ . 0 -

§ C H % Iron f': ol Lead v, CCtr* + N(x°, ) (N>0) only

5 5 40 5

R R R - v, CC1n* + everything else

20t 201 - v, CCNx* (N>1)
’—P }_}{ - v, CCNr* (N>1) + any particle(s)
0.0 0 0 ¥3
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
+ 0 -
Reco Q? (GeV?) plastic Reco Q? (GeV?) Iron (Fe) Reco Q? (GeV?) Lead (Pb) - v, CCOn™+ N(', ') (N>0) + any pa

- Most events in DUNE will contain a pion

- ~Half of those will undergo final state interactions as they leave the primary nucleus

» This sample has an unprecedented ability to see how final state interactions vary across
nucleus

 Plots above are for 1/10th of the neutrino-mode ME exposure; also plan an antineutrino
analysis
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ME Analysis Progress: Antineutrino Quasielastic Scattering

* The ME beam also provides access to higher momentum transfers:

MINERVA Preliminary - ME anti-v
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- Quasielastic scattering is governed by several form factors

- Most of these are measurable through electron scattering; the axial form factor is best
measured in neutrino scattering

- Recent fits to world data have large uncertainties at high Q2
- High Q2 data also valuable for distinguishing new lattice predictions (!)
- 12e20 ME antineutrino exposure will yield 10,000 signal events with 2 < Q2 <4 GeV?2
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ME Analysis Progress: MINERVA sees Neutrons

* In the ME data, we are also expanding our program of neutron
measurements:

neutron candidates per event

Data/ MC
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MINERVA/MINOS as NuMI Beam Monitor

* MINERVA continues to operate MINOS as a NuMI Beam Monitor

Neutrino Energy Spectrum Stability (PQ and NQ)
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* On axis detectors are excellent monitors of stability (or lack thereof) of
the neutrino beamline

* Low-nu standard candle distribution in MINERVA requires ~1e20
exposure (more in antineutrino mode)

« Collaboration would be willing to collect and analyze that data if requested in the
future, to understand impact of e.g. new targets
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Conclusions

 MINERVA is building a large bank of cross-section data that is being
used by oscillation experiments
- 21 physics publications so far

* ME neutrino-mode data taking is complete
- 12e20 POT collected

- Challenges related to intensity and flux have largely been addressed; production
for first publications is underway now

* We are reiterating our request for antineutrino running in 2019 to
accumulate 12e20 in antineutrino mode

- This exposure will make feasible many comparisons of antineutrino cross-sections
across nuclear targets

- Also provides access to the larger momentum transfer events that will be present at
DUNE, but largely unseen by other running neutrino experiments
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From the MINERVA Collaboration:

Thank You!!
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MINERVA Person Power

* We take a collaboration census every spring

* Conclusions from this year’s census:

- We have roughly the same FTE as we have had in past years, spread
over more people

- More people split time between DUNE and MINERVA

* A win-win for both collaborations — MINERVA provides opportunities for
publications necessary to advance careers

- But we have added several new people and institutions
- Nine students currently working on neutrino ME analyses

- Nine other students slated for antineutrino ME analyses

- Also have a healthy group of postdocs

* MINERVA collaborators remain enthusiastically committed to
analyzing our data
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Cross Section Publication Scorecard

» Expected statistics for 12e20 antineutrino QE

Target fiducial I-track | neutron-tagged | high Q* | CC coherent DIS
Material | mass (kg) | CCQE CCQE CCQE pions (all targets)
C 160 30,000 2,000 260 600 3,000
Pb 729 140,000 9,000 1,200 2,500 18,000
Fe 641 120,000 8,000 1,000 2,200 18,000
Water 452 90,000 5,500 750 1,500 8,000
CH 6000 1,100,000 70,000 10,000 21,000 110,000
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Cross Section Publication Scorecard
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Operations Cost

* Incremental cost of operating MINERVA is modest once NuMI is running
for NOVA

* Expect costs going forward to be similar to those of FY2017 (no major
purchases of He for He target or spare stock)

- Total cost was $115k M&S
- Dominated by costs associated with MINOS software license and electronics repair
- 1.24 FTE were charged to MINERVA operations, spread over many people

* The collaboration has streamlined operations with no loss of detector
uptime
- Shifts staffed for 8 hours out of every 24 hour period

- Collaboration dedicates 4.6 FTE to detector operations
* This is about 10% of the full FTE of the collaboration
* This includes 1 FTE of shifting
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Operations Cost — Computing

* Collaboration expends 2.6 FTE on computing

- This includes “keepup" processing for MINERVA and MINOS, offline production and
software releases

- Only keepup (0.5 FTE) is associate with detector operations

» Computing operations from SCD:

- $42k on media and $136k on CPU (16 million CPU hours)

» These costs are dominated by existing neutrino-mode sample; additional cost associated
with FY2019 antineutrino data would be minimal

- SCD expends 1.72 FTE on MINERVA computing operations

« Spread over many people working on software development, computing operations, and
computing facilities
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Cross Sections Inform Neutrino Energy Resolution
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Changing cross section models distorts neutrino energy resolution, differently for
neutrinos and antineutrinos -> fake CP violation, degrades sensitivity
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NOvA’s Adaptation of Our Low Recoil Analysis

 NOVA is doing something very similar as part of
its oscillation analysis evaluation of systematics

Second analyses (2016):
* Dytman ‘empirical MEC’” model is included in GENIE and used by NOVA
* Momentum transfer distribution fit to ND data; energy transfer set to match QE
* A 50% normalization uncertainty is taken ¢ oz o4 o o o 0z 0s 0o 0a o 02 04 0s 0s 1o
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More on Deep Inelastic Scattering
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Machine Learning for ME

* Machine learning yields big increases in signal and decreases in
background for neutrino deep inelastic scattering:
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«10° DIS Sample - Target 2
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