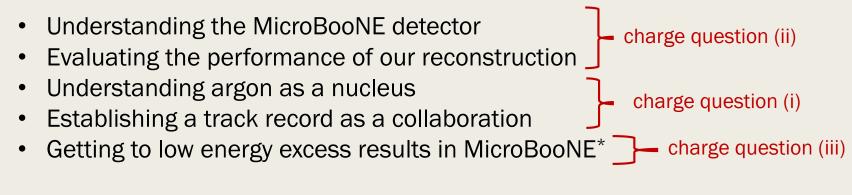


MICROBOONE UPDATE

B.T. Fleming, S. Zeller


Presentation at Fall 2017 PAC Pre-Meeting November 10, 2017

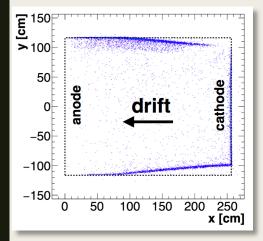
This Talk

2. MicroBooNE:

The committee is asked to comment on progress towards understanding the ultimate sensitivity of the experiment including (i) the plans for staging physics results, (ii) progress on calibrations, (iii) the impact of the realized detector performance on the ability of the experiment to measure the low-energy excess seen by MiniBooNE.

• Where are we (update from the July PAC) and our plans for getting out our next round of results ...

Will submit a written document addressing questions from last time

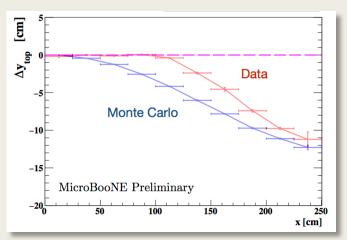

Understanding the MicroBooNE Detector

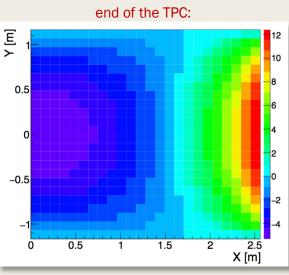
*	 Noise (JINST 12, P08003 (2017)) TPC signals (public note #1017) two papers in preparation, >100 pages more on this when discuss low energy excess analysis
*	 Space charge effects (public note #1018) UV laser + cosmics moving from edge effects to understanding the bulk Electron lifetime (public notes #1003, 1026) Recombination Diffusion
•	 Relative calibration Make sure detector response is uniform over space and time (public note #1013) Absolute calibration Convert dQ/dx (ADC/cm) to dE/dx (MeV/cm)
* next slides • PAC Pre-Meeting 11/10/17	 Detector systematics evaluation of uncertainties from above measurements + analysis of special runs

3

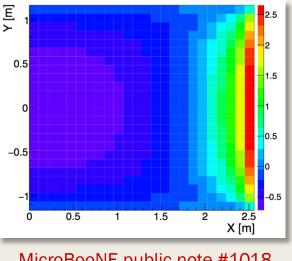
Space Charge Effects

Accumulated positive ions create a space charge • effect that distort tracks in the TPC

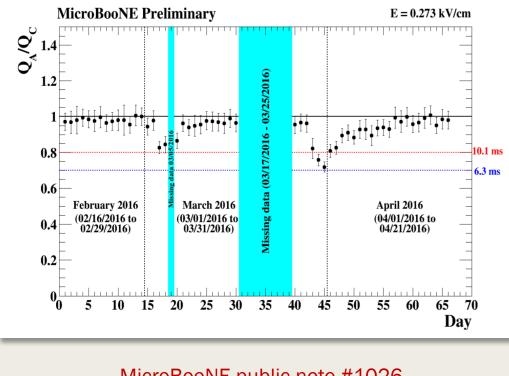

(from small muon counter)


moving from MC

based metrics

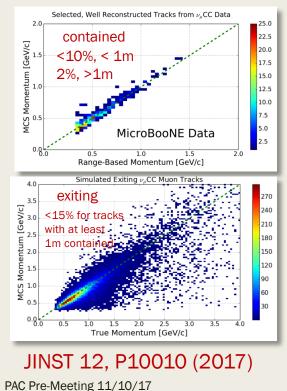

estimates to data-

- Edge effects: anode or cathode piercing cosmics
- Bulk: UV laser and TPC crossing cosmics
- Focused effort to finalize these measurements since has impact on the broader calibration program



PAC Pre-Meeting 11/10/17

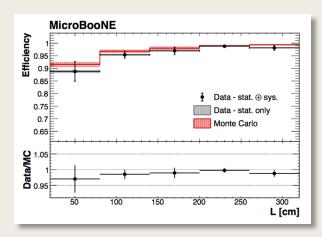
Argon Purity (new since the last PAC meeting)



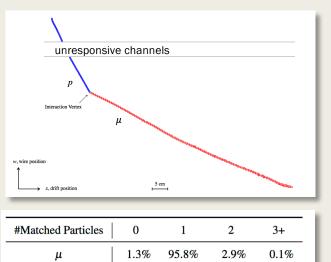
MicroBooNE public note #1026 (DPF 2017)

- Measure the argon purity using TPC-crossing cosmic ray μ tracks that have a known start time (t₀)
 - (public note #1028)
 - protoDUNE
- Measured electron lifetime is > 18 ms, $< 17 \text{ ppt O}_2 \text{ at } 70 \text{ kV}$
 - Design: > 3 ms, < 100 ppt 0₂ at 128 kV
 - Dominant systematics on QA/QC:
 5% space charge effects, 2% diffusion,
 1% recombination (public note #1026)
- Analysis is also run in real-time and purity trends logged in e-log
- Argon purity is not an issue in MicroBooNE

Understanding our Reconstruction (new since the last PAC meeting)


- Improved tuning of MCS
 parameters for argon
- Important for exiting muons

 Muon track identification using small μ counter system


$$\begin{split} \varepsilon_{data} &= (97.1 \text{ +/- } 0.1 \text{ (stat) +/- } 1.4 \text{ (syst)})\% \\ \varepsilon_{MC} &= (97.4 \text{ +/- } 0.1)\% \end{split}$$

Plan to repeat with full CRT

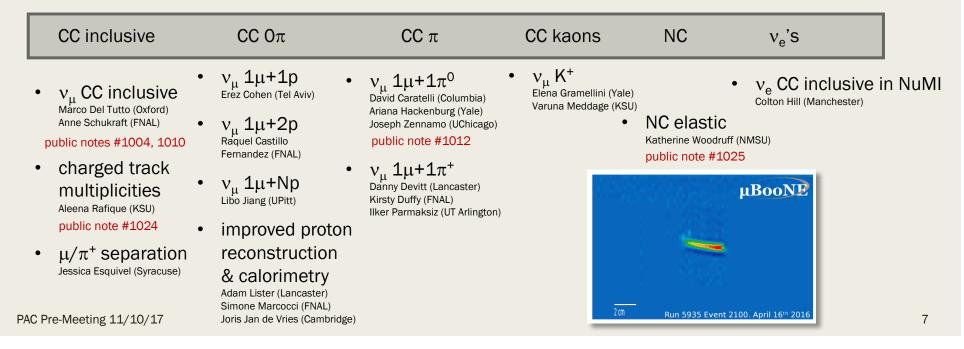
arXiv:1707.09903, submitted to JINST

- Pandora reconstruction performance (gaps, CRs)
 1p, Np, π⁺, π⁰, 1γ final states
- Used by many of our $\sigma_{\!_V}$ analyses

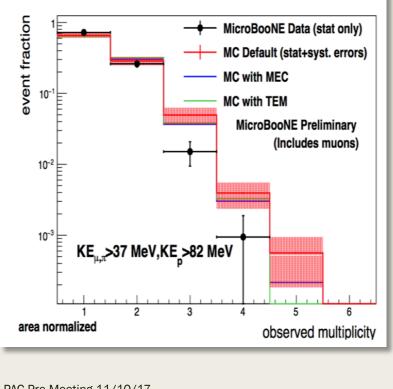
arXiv:1708.03135 submitted to Eur. Phys. J. C. s₆

87.3%

3.6%

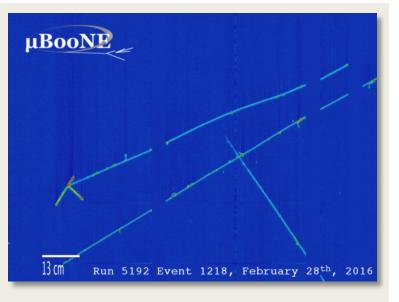

0.2%

8.9%


р

Understanding Argon as a Nucleus

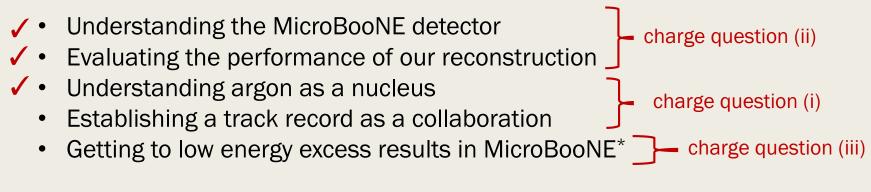
- This is critical given that we are studying v_e interactions in a E_v range (~few 100 MeV) and on a nucleus (argon) that together have not been previously scrutinized
 - GENIE tuned to external data (lots of new measurements, mostly carbon-based)
 - MicroBooNE v_{μ} analyses in argon
 - Provide crucial constraints for our low energy excess search



Charged Track Multiplicities

Observed Charged Particle Tracks in Neutrino Interactions

MicroBooNE public note #1024


- First measurement of charged track multiplicities in v_{μ} CC interactions in argon
 - Showcases the technology
 - Provides a stringent test of models
- Paper currently under collaboration review provides a first detailed look at how well GENIE predicts v scattering in argon for a variety of kinematic distributions

This Talk

2. MicroBooNE:

The committee is asked to comment on progress towards understanding the ultimate sensitivity of the experiment including (i) the plans for staging physics results, (ii) progress on calibrations, (iii) the impact of the realized detector performance on the ability of the experiment to measure the low-energy excess seen by MiniBooNE.

• Where are we (update from the July PAC) and our plans for getting out our next round of results ...

Will submit a written document addressing questions from last time

Establishing a Track Record

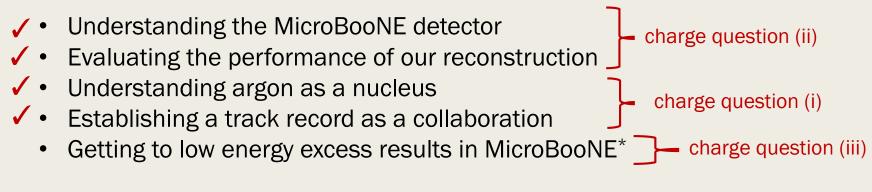
- In our first year of operations, MicroBooNE produced 15 public notes
- In 2017, MicroBooNE has produced 7 papers so far:
 - (1) Detector paper, JINST 12, P02017 (2017)
 - (2) CNN for neutrino/cosmic separation, JINST 12, P03011 (2017)
 - (3) Muon multiple Coulomb scattering in argon, JINST 12, P10010 (2017) → now published
 - (4) Michel electrons, JINST 12, P09014 (2017) → now published
 - (5) Noise sources and mitigation, JINST 12, P08003 (2017) → now published
 - (6) Muon track identification, submitted to JINST \rightarrow new since last PAC
 - (7) Pandora reconstruction and PID, submitted to Eur. Phys. J. C. \rightarrow new since last PAC
 - Have 9 more papers in the pipeline ...
 - (1) Charged track multiplicities in v_{μ} CC interactions \rightarrow first draft in collaboration review
 - (2) Signal processing (2 papers) \rightarrow first draft in collaboration review
 - (3) MicroBooNE flux prediction
 - (4) SSNet for shower/track separation
 - (5) CNN optimization for PID
 - (6) Analysis of v_{μ} CC π^{0} interactions in argon
 - (7) Study of v_{μ} CC 0π interactions and improved E_{v} determination
 - (8) Supernova readout stream

Pipeline

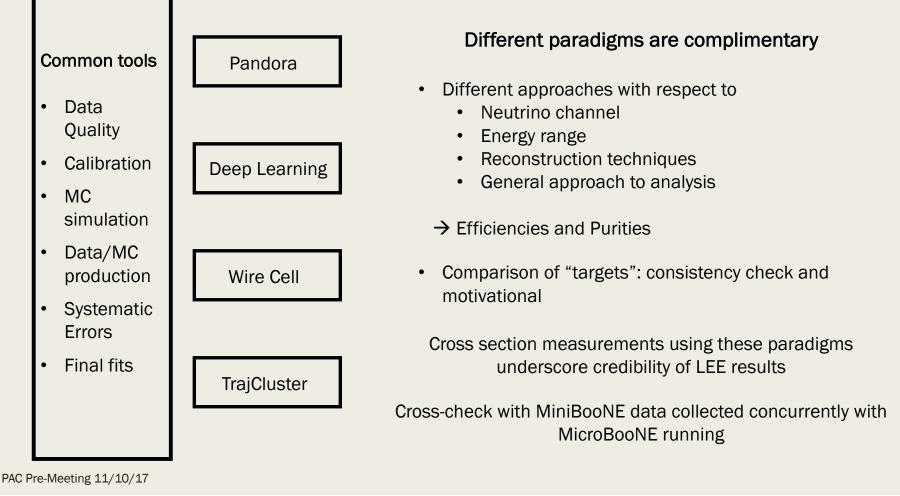
- We are a well-oiled machine at this point ...
- Multiple analyses have been reviewed and are presently under review
 - We have an incredible amount of documentation, much of which we are releasing as public notes
- Results must go through multiple layers of approval
 - Work starts in a working group
 - 46 senior members (3/4) of the collaboration have been members of Editorial Boards

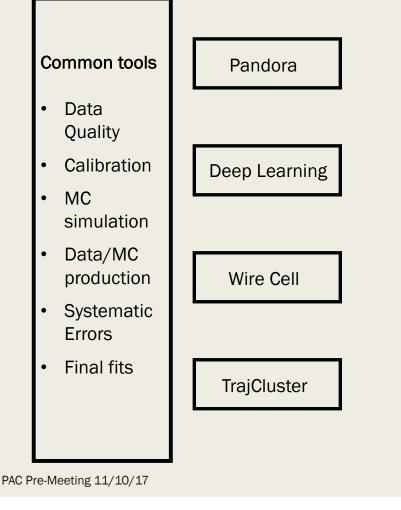
#	Analysis	Group	Analysis Contact	EB	Date created	Internal note	Public Note	Bi- weekly	Paper draft	Publication
1036	CNN optimization for PID	AT	Ariana, Eric, Kazu, Kevin	Kirby, Glenn	Oct 2017	1036- INT	1036- PUB	DocDB- 11933		
1035	SSNet for track shower separation	AT	Kazu, Taritree, Vic	Eric, Giuseppe	Oct 2017	1035- INT		DocDB- 11933	DocDB- 10745	
1033	Signal processing and performance in simulaiton	Det. Phys.	Brooke, Hanyo	lgor, Leon	Oct 2017	see 1017		DocDB- 12242	DocDB- 11861	
1032	CCpi0 cross section	Det. Phys.	Joseph, Ariana	Jonathan, Donna, TBD	Oct 2017	1032- INT	1032- PUB	DocDB- 11690		
1028	t0 from anode/cathode piercing tracks	Calib	Chris B., David C.	Tracy, Bryce	Dec 2016	DocDB- 6829	DocDB- 6825			
1027	Pi0 peak	Osc	Ariana H., David C.	Leslie, Jonathan, Randy	Dec 2016	DocDB- 6866	Note- 1027- PUB		-1	
1026	Lifetime	Det. Phys.	Varuna, Sowjanya	Xin, Donna, Leon	Dec 2016	DocDE 23	ncDB- 56.			
1025	NC elastic / proton	Xsec	Katherine	Sowjanya, Josh, Tim	Nov 2016	Dc 0B- 588	0cDB- 6. 11			
1024	Charged Particle Track Multiplicity	Xsec	Aleena	Tingjun, Steve D, Georgia	Nov 2016	DocD 6821	DocDB- 7108	DocDB- 9731	PRD(tbc) / DocDB- 11153	
1023	Multiple Coulomb Scattering	Xsec	David K., Polina A.	lgor, Bruce, Camillo	Nov 2016	DocDB- 6741	no PUB		JINST / DocDB- 6741	arxiv:1708.03135 JINST 12, P10010 (2017)
1021	Use of MuCS tagged tracks for tracking efficiency studies	Det. Phys.	Roberto S.	Andy B., Vassili	Sep 2016	DocDB- 5975	no PUB		JINST / DocDB- 7626	arxiv:1707.09903 Submitted to JINST
1019	Particle ID and neutrino identification with Deep Learning (CNN)	Osc	Kazu, Taritree	Brett, Panagiotis	May 2016	DocDB- 5855	DocDB- 5905		JINST / DocDB- 6376	arxiv:1611.05531 JINST 12, P03011 (2017)
1018	Space charge measurement from cosmic muons	Det. Phys.	Mike M	Kirk, Craig, Nathaniel	May 2016	DocDB- 5860	DocDB- 5860		Expected 2018	

webpage of MicroBooNE analyses:

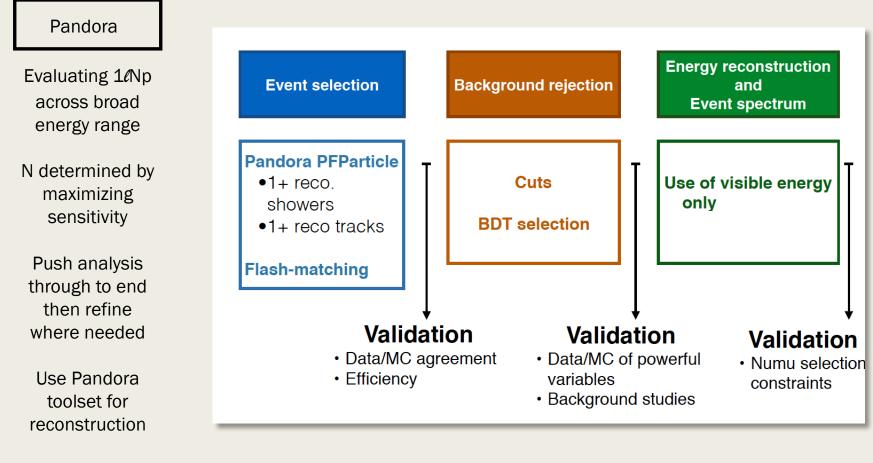

1017	TPC signal processing	Det. Phys.	Xin	lgor, Richard	May 2016	DocDB- 5808	DocDB- 5808	1033/1034	
1016	TPC noise filtering	Det. Phys.	Jyoti	Mark C, Byron	May 2016	DocDB- 5854	DocDB- 5854	JINST / DocDB- 7318	arxiv:1705.0734 JINST 12, P08003 (2017)
1015	Pandora reconstruction in uB	Reco	John M	Bruce, Leon	May 2016	DocDB- 5828	DocDB- 5987	EPJC / DocDB- 7561	arxiv:1708.0313 Submitted to EPJC
1014	Reconstructed cosmic data/MC comparison	Reco	Adam L, Danny D	Eric, Cat	May 2016	DocDB- 5849	DocDB- 5989		
1013	Detector stability for 5E19 POT	Analysis To	Aleena	Steve W, Stephen P	May 2016	DocDB- 5850	DocDB- 5986		
1012	Recc structing golder ?i0	Dsc	'oseph Z	Leslie, Jonathan, Randy	May 2016	DocDB- 5864	DocDB- 5864		
11	↓ m tin ig	eam	iarko et al.	Alberto M, Mary B.	Mar 2016	DocDB- 4984	Note #1011		
101	First Nu. C distributionu on data	Xsec	Anne S.	Xin Q., Mike S.	Feb 2016	DocDB- 5851	DocDB- 5982		
1009	Drift speed measurement with UV laser data (for APS)	Det. Phys.	Joseph Z.	Bruce B., Mike M.	Mar 2016	DocDB- 5509	DocDB- 5509		
1008	Michel electron spectrum	Det. Phys.	David C.	Gerry G., Roxanne G.	Feb 2016	DocDB- 5486	DocDB- 5579	JINST / DocDB- 6813	arxiv:1704.0292 JINST 12, P09014 (2017)
1006	NC PI0 event selection study (for APS 2016)	Xsec	Ryan G.	Leslie C., Jonathan A.	Feb 2016	DocDB- 5510	DocDB- 5580		
1005	Cosmic ray studies in MicroBooNE	"Overburden" task force	Sowjanya G.	Georgia K., Donna N.	Dec 2015	DocDB- 4231	DocDB- 5211		
1004	Numu CC inclusive cross section study based on simulation	Xsec	Anne S.	Xin Q., Mike S.	Oct 2015		1004 / DocDB- 4994		
1003	Electronegative concentration and electron lifetime		Ben C., M. Zuckerbrot	Josh S, Brian R.	Sept 2015	DocDB- 4823	DocDB- 4928		
1002	First neutrino events	Reco	Anne S., Andy F.	Dave S., Andrzej	Sept 2015	DocDB- 4874	DocDB- 4903		
	Nucleon Decay	APE	Elena G.	Jen R., Eric C.	Aug 2015		DocDB- 4765		
1001	Noise vs. Fill Level	Commissioning	David C.	Bryce L., Vittorio P.	July 2015		DocDB- 4717		

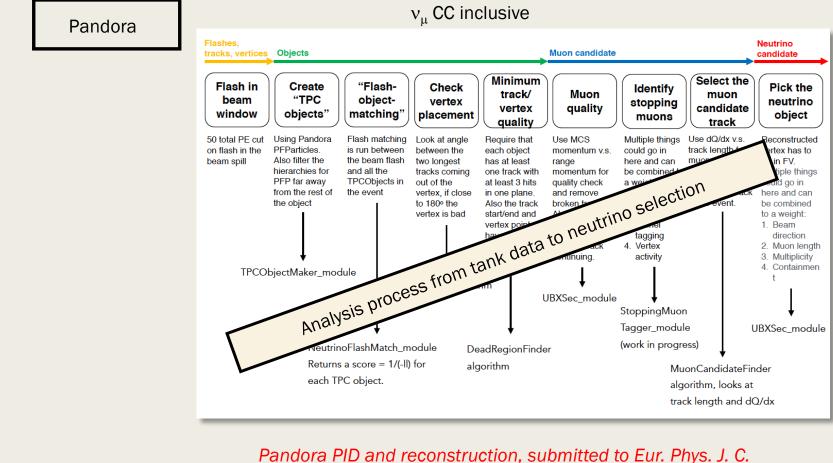
This Talk


2. MicroBooNE:


The committee is asked to comment on progress towards understanding the ultimate sensitivity of the experiment including (i) the plans for staging physics results, (ii) progress on calibrations, (iii) the impact of the realized detector performance on the ability of the experiment to measure the low-energy excess seen by MiniBooNE.

• Where are we (update from the July PAC) and our plans for getting out our next round of results ...

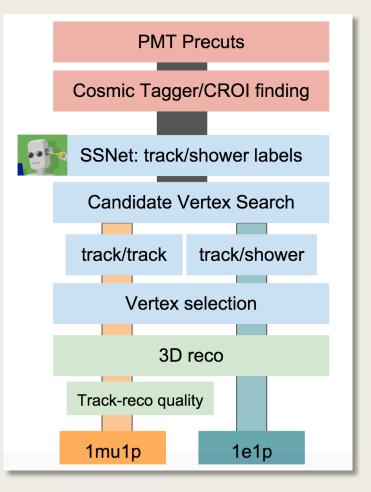

Will submit a written document addressing questions from last time



Targets: consistency check and motivationalEvaluated with open data sets (ie: 5E19 now)

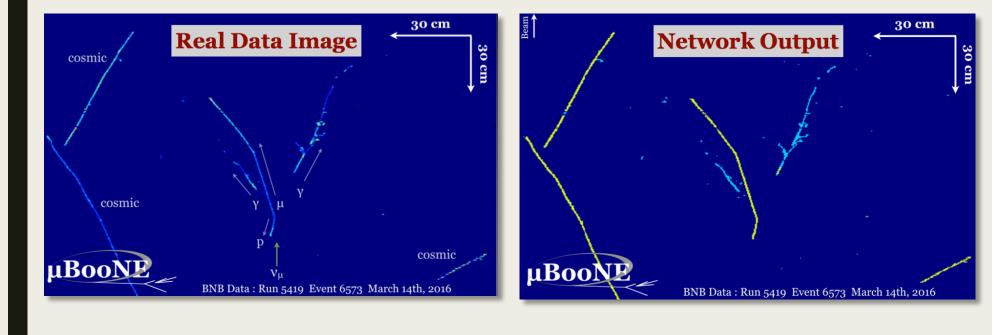
- Vertex reconstruction precision
- Track and shower reconstruction precision
- e/γ separation (dE/dx plot)
- π^0 mass peak for shower energy calibration
- ν_{μ} CC inclusive and 1 μNp event rates
 - data/MC comparisons
 - Constraint of ν_e intrinsics
 - Uncertainties of nuclear effects on Argon
- v_e selection (efficiency)
- Background rejection (purity)
- Error budget on signal and background

Deep Learning

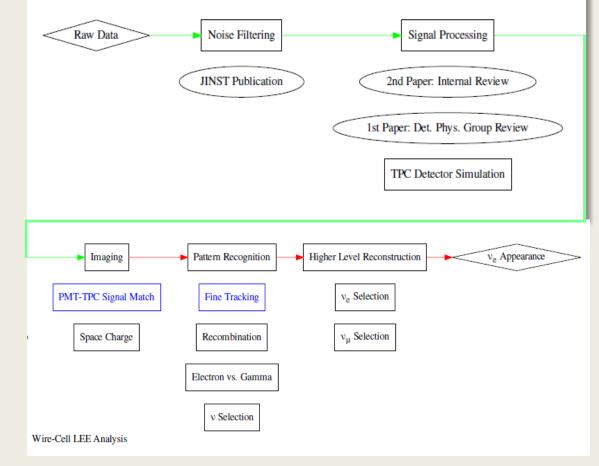

Focus on 1llp maximizing efficiency below 600 MeV but retaining efficiency above this

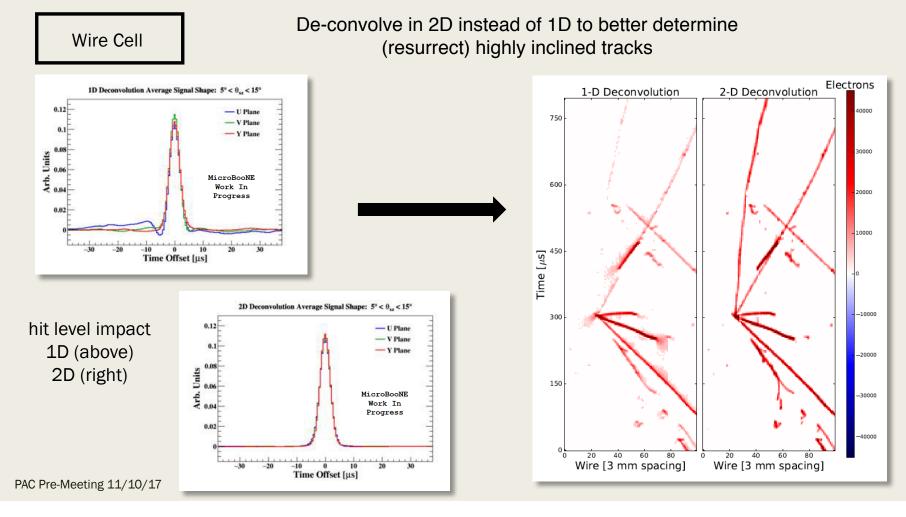
Mostly "traditional" reconstruction

CNN's used for pixel ID as tracks or showers and for particle ID once constituent particles have been identified


Push analysis through to end then refine where needed

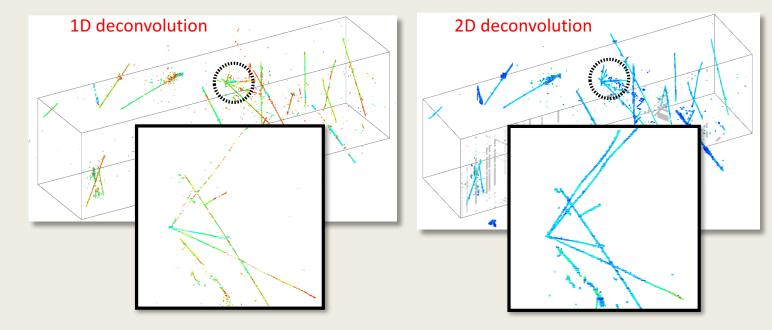
- CNN neutrino/cosmic separation: JINST 12, P03011 (2017)
- SSNet for shower/track separation: in preparation
- CNN optimization for PID: in preparation

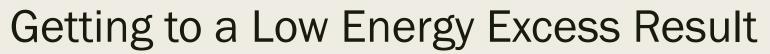

Deep Learning

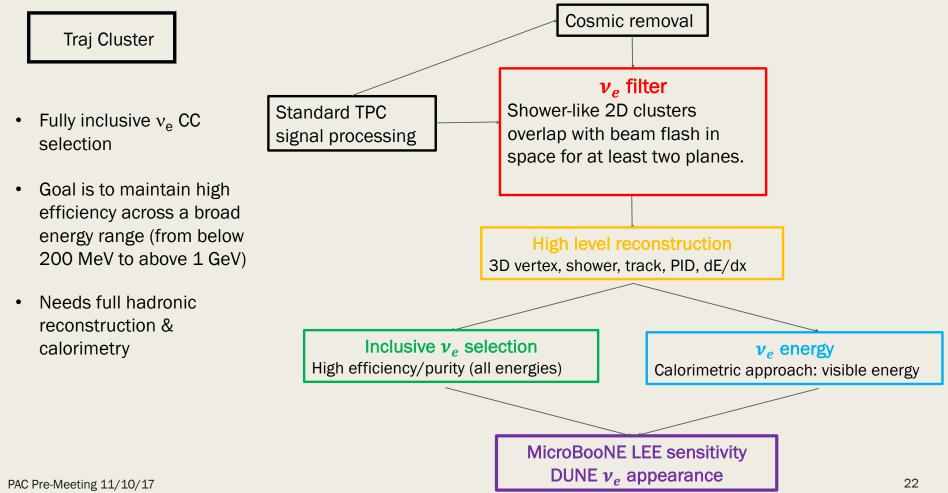

CNN classifies pixels as track-like or shower-like \rightarrow within cluster can separately ID track like segments vs shower like segments

Wire Cell

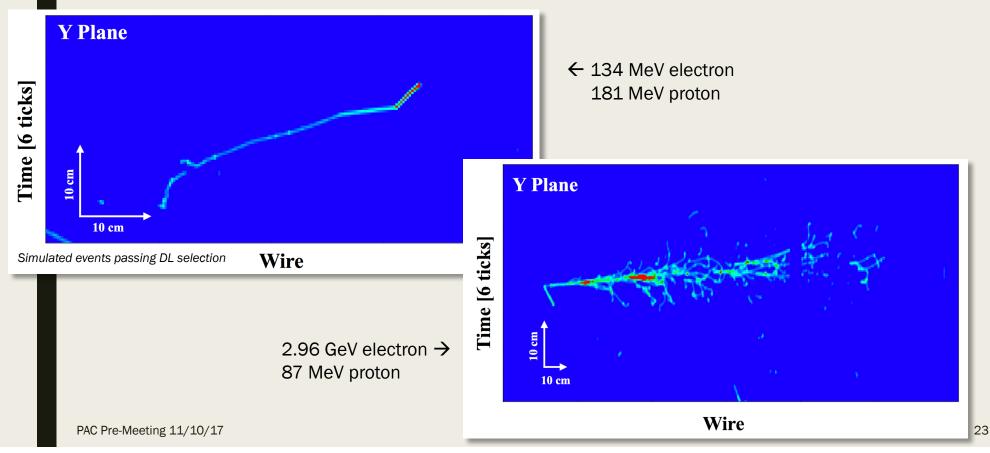
- Analysis of raw data through signal processing with 2D deconvolution to recover ionization charge
- Use charge matching to reconstruct 3D images independent of event topology (from "wire" to "cell")
- Downstream reconstruction and PID benefit
- Noise sources and mitigation,
 JINST 12, P08003 (2017) → published
- Signal processing (2 papers)
 → first draft in collaboration review

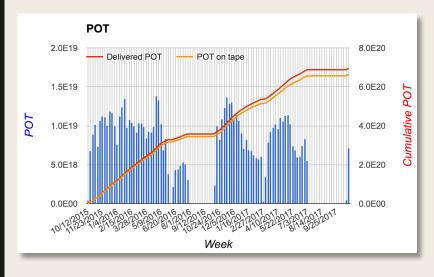



20


Wire Cell

From "wire" to "cell": Utilize charge matching and advanced compressed sensing technique to reconstruct 3D cells (space points) \rightarrow first time this has even been done!


Better determining charge at hit level on all wires enables for the first time a direct 3D imaging, which reduce challenges in downstream reconstruction and PID



Low vs. High Energy ν_e in MicroBooNE

• We have a more challenging job than DUNE ...

Data Collected to Date

• Total BNB delivered to MicroBooNE since start of operations (<u>detector on</u>):

- Run 1 (pre service boards, pre CRT): 3.6x10²⁰ POT*
- Total with new service boards: 3.0x10²⁰ POT*
- Total with CRT: 1.0x10²⁰ POT* (is a subset of previous line item)
- MicroBooNE is approved to run through FY18 \rightarrow thank you!
- expect to collect an additional ~(2-3)x10²⁰ POT this year with NuMI & g-2 (M. Convery, July 2017 PAC presentation)

PAC Pre-Meeting 11/10/17

* collected (not recorded) POT, no data quality cuts 24

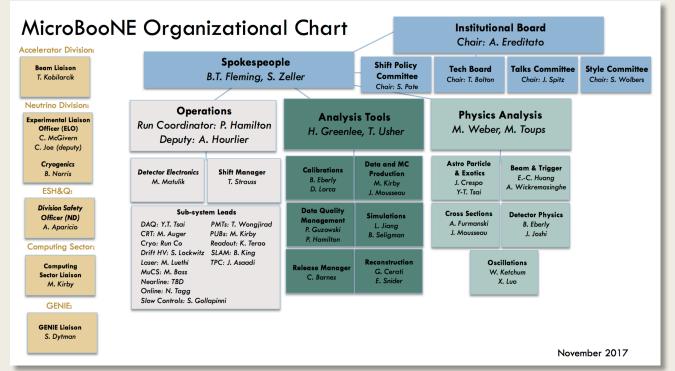
Biggest Challenges (Right Now)

Data and Monte Carlo processing

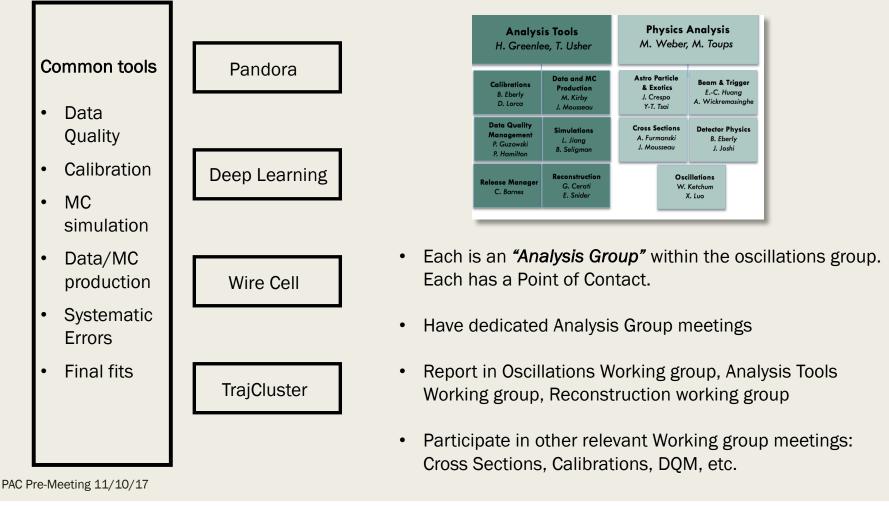
- Currently takes 6 months to complete a full scale production (limiting factors: dCache disk, I/O)
- Added 3 more people to Production team + 24/7 monitoring of production jobs by shifters
- Launched a task force to study how we can reduce our processing timeline by reducing file sizes

Cosmic backgrounds

- Advancing light/charge matching to further reduce cosmic backgrounds
- Developing strategies for collecting/harvesting more data for data-driven subtraction
- Take more data with the Cosmic Ray Tagger (CRT). So far: ~1x10²⁰ POT
- Identifying and reconstructing <u>low energy</u> electron neutrinos in a <u>surface</u> detector
 - We currently have 4 approaches
 - We are learning their strengths and weaknesses to maximize our sensitivity
- Resources
 - We are not a very large collaboration and many people are split between multiple LAr efforts


Conclusions

- To date, we have collected a total of 6.6x10²⁰ POT (6.3x10²⁰ POT on-tape), 1x10²⁰ POT of which includes the cosmic ray tagger. Expect to get to a total of (8-9)x10²⁰ POT by summer 2018.
- We remain on an ambitious path for producing new results at summer 2018 conferences. These plans are unchanged from the July PAC, but we are concerned about how long it will take to produce the data and MC samples needed to advance these analyses.
- MicroBooNE has established a strong track record of maintaining stable operations (95% uptime over past 2 years of running) and being able to get results out of this detector (19 public notes + 7 papers, 9 more in the pipeline).
- We have a clear plan for producing low energy excess results and we are leading the path for SBN and DUNE.


Backup

Collaboration Structure

• We are organized in a way that supports this body of work

- on-boarded 7 new conveners since the last PAC meeting (part of our natural life cycle)
- new Run Coordinator (turn-over every 3 months)
- new IB chair (elected)
- new Talks Committee members + chair
- 180 scientists from 31 institutions in 5 countries (U.S., U.K., Switzerland, Israel, Turkey)
 - 10 new collaborators since the last PAC meeting

MicroBooNE Collaboration (November 2017)

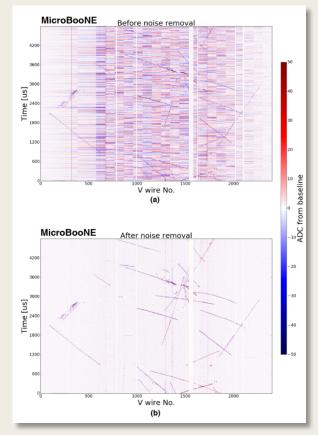
University of Bern, Switzerland: M. Auger, Y. Chen, A. Ereditato, D. Goeldi, I. Kreslo, D. Lorca, M. Lüethi, T. Mettler, C. Rudolf von Rohr, J. Sinclair, M. Weber Brookhaven: M. Bass, M. Bishai, H. Chen, J. Joshi, B. Kirby, Y. Li, X. Oian, V. Radeka, B. Viren, H. Wei, B. Yu, C. Zhang University of Cambridge: J. Anthony, L. Escudero Sanchez, J. Jan de Vries, J. Marshall, A. Smith, M. Thomson University of Chicago: A. Mastbaum, D.W. Schmitz, J. Zennamo University of Cincinnati: R. Grosso, R.A. Johnson Colorado State University: M. Mooney, I. Caro Terrazas, R. LaZur Columbia University: L. Camilleri, D. Caratelli, D. Cianci, J. Crespo, A. Fadeeva V. Genty, Y.-J. Jwa, D. Kaleko, G. Karagiorgi, M. Ross-Lonergan, W. Seligman, M. Shaevitz, K. Sutton Fermilab: B. Baller, F. Cavanna, R. Castillo Fernandez, G. Cerati, K. Duffy, H. Greenlee, C. James, H. Jostlein, W. Ketchum, M. Kirby, T. Kobilarcik, S. Lockwitz, B. Lundberg, A. Marchionni, S. Marcocci, C. Moore, O. Palamara, Z. Pavlovic, S. Pordes, J.L. Raaf, A. Schukraft, A. E. Snider, P. Spentzouris, J. St. John, T. Strauss, M. Toups, S. Wolbers, T. Yang, G.P. Zeller* Harvard University: C. Adams, R. Guenette, J. Martin-Albo Illinois Institute of Technology: R. An, B. Littlejohn, D. Martinez Kansas State University: M. Alrashed, T. Bolton, G. Horton-Smith, V. Meddage, A. Rafique Lancaster University: A. Blake, D. Devitt, A. Lister, J. Nowak Los Alamos: G. Garvey, E-C. Huang, W.C. Louis, T. Thornton, R. Van de Water University of Manchester: J. Evans, A. Furmanski, D. Gamez, O. Goodwin, P. Guzowski, J. Hewes, C. Hill, K. Mistry, R. Murrells, D. Porzio, S. Söldner-Rembold, A.M. Szelc MIT: A. Ashkenazi, R. Carr, J.M. Conrad, G. Collin, A. Diaz, O. Hen, A. Hourlier, J. Moon, A. Papadopoulou, L. Yates University of Michigan, Ann Arbor: C. Barnes, R. Fitzpatrick, J. Mousseau, J. Spitz New Mexico State University: V. Papavassiliou, S.F. Pate, S. Sword-Fehlberg, K. Woodruff Otterbein University: N. Tagg University of Oxford: G. Barr, M. Del Tutto, A. Laube, R. Soleti, W. Van De Pontseele University of Pittsburgh: S. Dytman, L. Jiang, D. Naples, V. Paolone, A. Wickremasinghe 180 collaborators Pacific Northwest National Laboratory: E. Church, K. Bhattacharya, K. Wierman 31 institutions (7 non-U.S.) Saint Mary's University of Minnesota: P. Nienaber SLAC: M. Convery, B. Eberly, L. Rochester, K. Terao, Y-T. Tsai, T. Usher 40 postdocs Syracuse University: A. Bhat, J. Esquivel, P. Hamilton, G. Pulliam, M. Soderberg 58 graduate students Tel Aviv University: E. Cohen, E. Piasetzky University of Tennessee, Knoxville: S. Gollapinni, A. Mogan, W. Tang, G. Yarbrough University of Texas at Arlington: J. Asaadi, E. Davenport, Z. Williams Tubitak Space Technologies Research Institute, Turkey: F. Bay, B. Kocaman, M. Kopru Tufts University: R. Sharankova, T. Wongjirad Virginia Tech: C. Mariani, M. Murphy, V. Pandey Yale University: S. Balasubramanian, B.T. Fleming*, E. Gramellini, A. Hackenburg, X. Luo, B. Russell, L. Cooper-Troendle, S. Tufanli *spokespeople

10 new
 collaborators
 since last PAC
 meeting

PAC Pre-Meeting 11/10/17

30

Summer Shutdown Activities

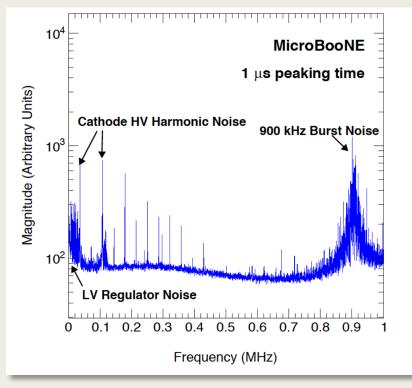

- We had a very busy summer. Since our briefing at the July 2017 PAC:
 - Cryogenics system maintenance
 - New PMT high voltage power source
 - Studies of late light
 - Investigations of remaining unknown source of noise ("zig-zag")
 - UV Laser maintenance
 - DAQ and computing kernel upgrades
 - Completed Supernova readout stream commissioning
 - Additional dedicated cosmic data taking (Oct 6-27)
 - Work to understand networking router failures in LArTF
 - Investigations of the loss of a PMT on our trigger efficiency

Improvements in MicroBooNE Monte Carlo

- Multiple GENIE configurations (with alternate nuclear models, e.g., MEC)
- Data-driven noise model
- Data-driven field response
- Signal processing that includes misconfigured ASIC channels
- Updated geometry including CRT
- Optical + trigger simulation improvements including improved optical reconstruction
- Common optical filter for physics analyses
- Space charge simulation
- Support for cosmic overlays
- Addition of time dependency in simulated quantities
- New Kalman filter track fitting
- MCS track momentum code
- Improved pattern recognition algorithms (Pandora, Traj Cluster, shower reconstruction)
- Updated beam quality monitoring due to failed device in BNB
- Data quality monitoring updates extending through Run 1 data
- Analysis tree updates for analyzers
- NuMI software trigger simulation bug fix

Impact of MicroBooNE Noise Studies

- ASIC saturation: new generation ASICs now have additional input bias current settings
- Wire vibrations: spacers have been added to support the anode wires in the design of new LAr TPCs to reduce vibrations and wire motion from fluid flow
- **Misconfigured channels:** additional electrostatic discharge protection has been added on the configuration pins in next generation ASICs
- ASIC startup: design margin of the bandgap reference circuit has been increased in the new ASIC design to remove start-up problems
- Electronics environment: additional attention is being paid to grounding during building construction (e.g., SBND, ICARUS) and current monitoring
- Offline noise filtering: MicroBooNE approach and code had immediate impact on DUNE 35 ton data analysis → see picture to the left

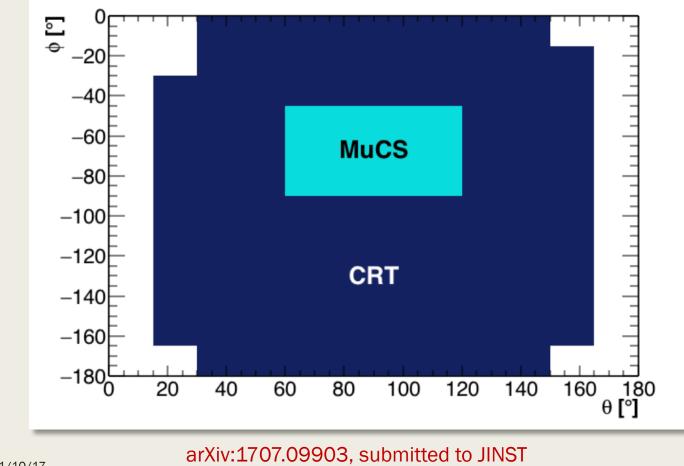


JINST 12, P08003 (2017)

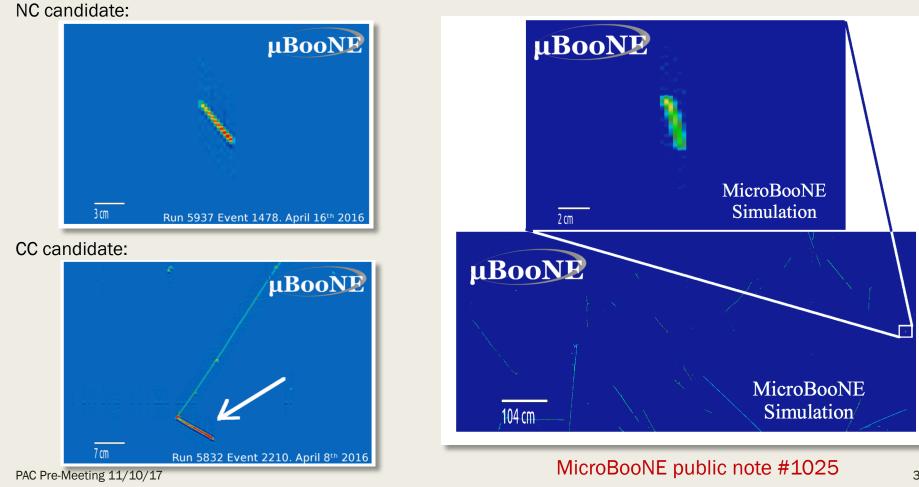
PAC Pre-Meeting 11/10/17


33

Signal/Noise in MicroBooNE


- Low frequency noise from voltage regulator
- Drift high voltage power supply noise
- 900 KHz burst noise

PAC Pre-Meeting 11/10/17



JINST 12, P08003 (2017)

CRT Coverage

NC Elastic Events (v_{μ} + Ar $\rightarrow v_{\mu}$ + nucleons)

