FROM RESEARCH TO INDUSTRY

www.cea.fr

POTENTIAL IN-KIND CONTRIBUTION TO PIP-II CONSTRUCTION

Olivier NAPOLY

on behalf of CEA, DRF/Irfu

December 12, 2017

The French Alternative Energies and Atomic Energy Commission (CEA)

05/12/2017

2

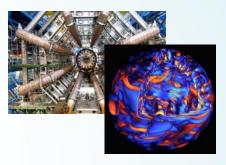
DE LA RECHERCHE À L'INDUSTRIE

FUNDAMENTAL RESEARCH ACTIVITIES

PUSHING THE LIMITS OF TECHNOLOGY ... TO ACHIEVE CUTTING EDGE SCIENCE

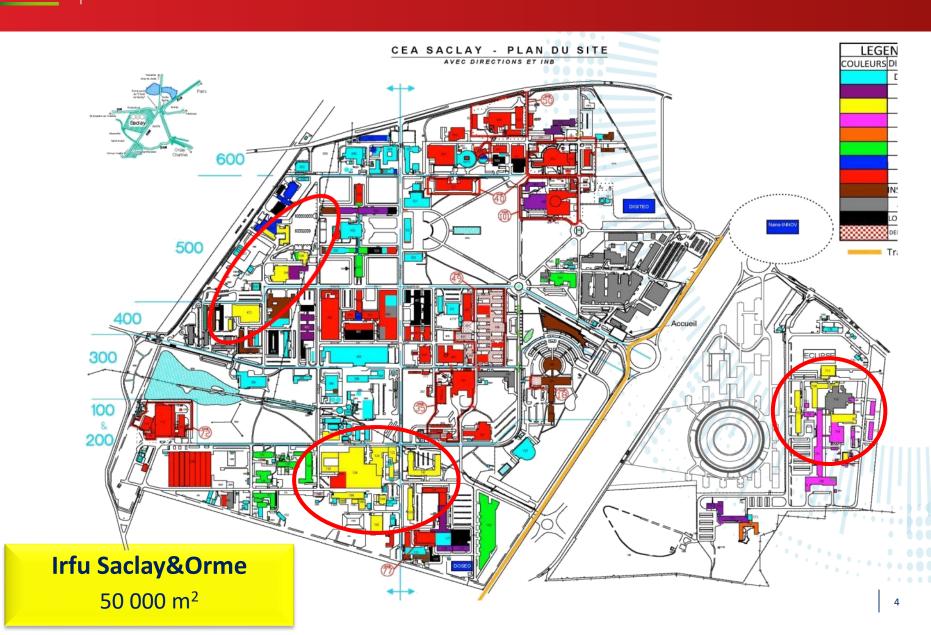
From basic research to applications

Physics


(Nuclear physics, high energy physics, astrophysics, fusion, quantum engineering)

- Material sciences, chemistry
- Biology and biotechnologies, health
- Climate & environmental studies

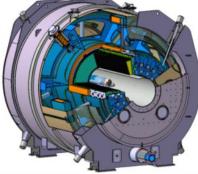
KNO



Infrastructures and instrumentation

- Cryotechnologies, accelerators, magnets, lasers, detectors
- Radioisotopic tagging, radiochemistry
- Genomics, proteomics, radiobiology, bioimaging
- High performance computing
- Micro and Nanotechnologies, material processes

CEA SACLAY RESEARCH CENTER

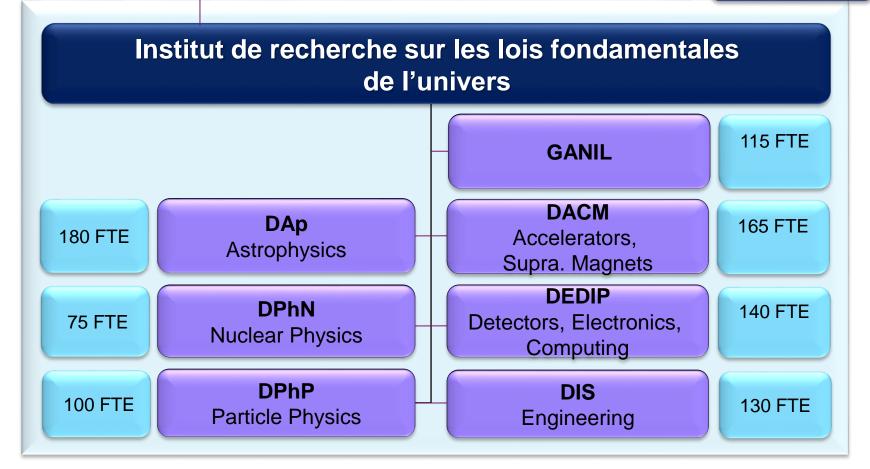


DE LA RECHERCHE À L'INDUSTRIE

Irfu : overview

Anne-Isabelle Etienvre Head of Institute

www.cea.fr


FROM RESEARCH TO INDUSTR

IRFU:OVERVIEW

17 ERC975 publications65 active patents

~ 950 FTE

Basic Research in Physics in link with large scale facilities Researches into the fundamental laws of the Universe

Co-Leader in France with CNRS (INSU & IN2P3), Universities
Goals: 4 key questions and associated technology

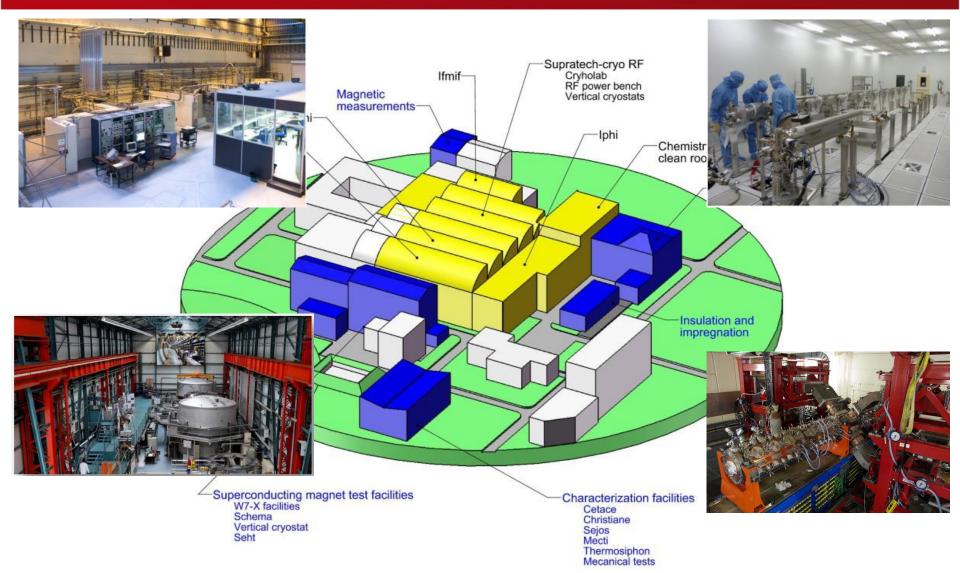
What are the ultimate constituents of matter? What is the energy content of the Universe? How is the Universe structured? What are nuclear matter self-organisation processes?

Broader approach, large scale facilities and Cryotechnologies

Goals: 2 specific technological topics

- Superconducting Magnets
- Particle Accelerators

STRONG INTERNATIONAL COLLABORATIONS

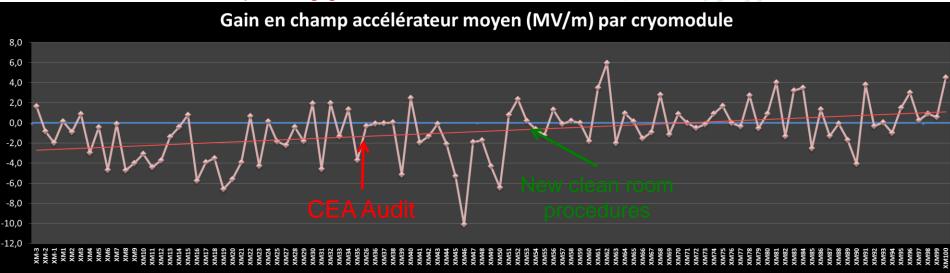


DEPARTMENT FOR ACCELERATORS, CRYOGENICS AND MAGNETISM (IRFU/DACM, ~165 FTE)

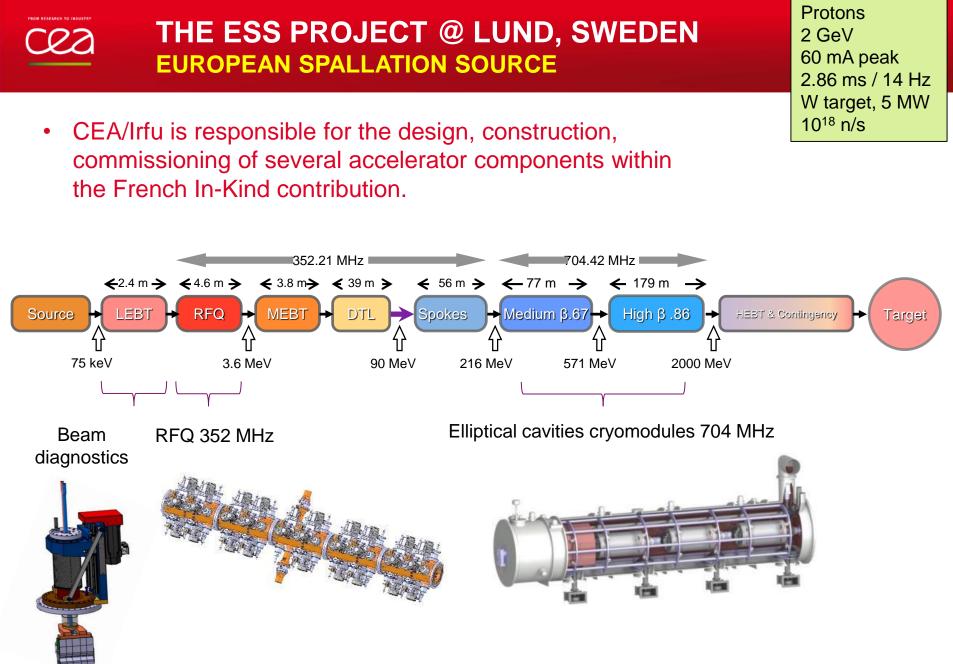
- Irfu/DACM is developing and realizing particle accelerators, cryogenic systems and superconducting magnets for the scientific programs of Irfu, and more widely of CEA.
- Iru/DACM develops R&D activities to support these programs.
- Irfu/DACM is also involved in large scale projects in Europe and Japan
- These projects are managed within the Irfu project organisation
- These projects rely on the skills of the Systems Engineering Department
- In December 2016, 81 engineers and 44 technicians, CEA staff, belonged to the Irfu/DACM Department. 9

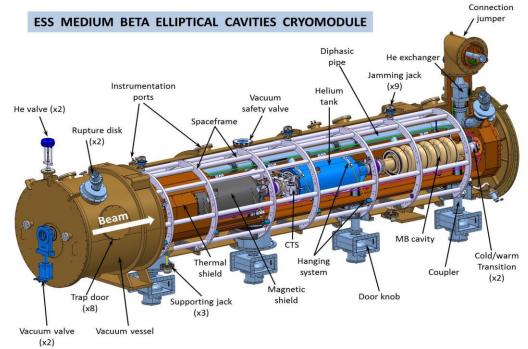
DACM TECHNOLOGICAL INFRASTRUCTURES (25 000 M²)

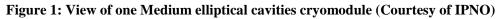
EU-XFEL : ACHIEVEMENT OF THE 100 CRYOMODULES INTEGRATION


First series cryomodule assembly started on September 3, 2013 Last of 100 series cryomodule left Saclay on July 24, 2016

Excellent operating gradient


EU-XFEL ASSEMBLY: FROM CAVITIES TO CRYOMODULES





TA AIK 5.3 ELLIPTICAL CRYOMODULES ENGINEERING, ASSEMBLY AND TEST" & "TECHNICAL ASSIS-TANCE IN CAVITY DESIGN, MANUFACTURING AND TESTS, CEA

- <u>30 Cryomodules (9 medium-beta</u> <u>and 21 high-beta)</u> are required to accelerate protons from an energy of 216 MeV up to an energy of 2 GeV.
- <u>The medium-beta and the high-</u> <u>beta Cryomodules have the same</u> <u>general design</u> with different cavities and only minor differences in the components.
- The cryostat design has been taken over by IN2P3/IPNO.

EUROPEAN SPALLATION

SOURCE

TA AIK 5.3 ELLIPTICAL CRYOMODULES ENGINEERING, ASSEMBLY AND TEST" & "TECHNICAL ASSIS-TANCE IN CAVITY DESIGN, MANUFACTURING AND TESTS, CEA

EUROPEAN SPALLATION SOURCE

Key Activities

- 1. The component assembly and associated tooling design necessary for the assembly and tests.
- 2. The acceptance operations of the Cryomodules components and cavities before assembly.
- 3. The assembly of 9 medium-beta Cryomodules and 21 high-beta Cryomodules.
- 4. The development of the Cryomodule verification plan
- 5. Provide assistance to ESS (and partners) regarding cavity manufacturing.
- 6. The 3 first Cryomodules of each type (3 Medium-beta and 3 High-beta) will be tested at Saclay in the test stand allowing RF power tests at 2 K. A total of 6 RF power tests will be performed.

ASSEMBLAGE HORS SALLE BLANCHE

- The Eu-XFEL cryomodule assembly at Saclay ended in July 2016.
- The end of the ESS 704 MHz cryomodule assembly is scheduled in 2022.
- CEA has the technical infrastructure and capability, and will have a unique experience to take over the production of the 11 PIP-II LB650 cryomodules.
- This venture has been discussed at the technical level between CEA and FNAL since the 'DOE Project Independent Review' in June 2015.
- This venture aligns with the participation of Irfu in the DUNE collaboration.
- Technically, this venture could encompass anything in-between
 - a) an 'ESS-like' contribution including: design and procurement of all 11 module components (e.g. RF couplers, tuners, cryostats, magnetic shielding, etc.) excepted cavities; assembly of 11 strings and modules; up to 11 RF modules tests; QA-QC off all the above.
 - b) an 'Eu-XFEL' contribution consisting of assembly 11 string and module assembly; a limited number of procurements (e.g. magnetic shielding, superinsulation, etc.); QA-QC of the above.
- Discussion at the Agency level has started and it needs to be continued at the Ministry level, to investigate the funding mechanism.

				SCRF Accelerators / E	urope [29=5+11+4+9]	>200	C	rvo	omodul	es
Name	Particles	# cavities		Туре	Material	Gradient	Mode	Ť	Status	Location
HERA	electrons, positrons	16	500 MHz	β=1 elliptical 4-cell	Nb	4.0 MV/m	CW	4.2 K	de-commissioned	DESY
LEP200	electrons, positrons	16	352 MHz	β=1 elliptical 4-cell	Nb	5 MV/m	cw	4.5 K	de-commissioned	CERN
		272			Nb/Cu	7 MV/m				
LISA	electrons	4	500 MHz	β=1 elliptical 4-cell	Nb	6 MV/m	pulsed	4.2 K	de-commissioned	LN Frascati
MACSE	electrons	5	1.5 GHz	β=1 elliptical 5-cell	Nb	10 MV/m	CW	1.8 K	de-commissioned	CEA-Saclay
Tandem PA	ions	16	81 MHz	β=0.085 helix λ/2	Nb	2.2 MV/m	cw	4.2 K	de-commissioned	CEA-Saclay
		34	135 MHz	β=0.085 helix λ						
ALICE	electrons	2	1.3 GHz	β=1 elliptical 9-cell	Nb	3-5 MV/m	pulsed	2 K	operation	Daresbury
		2		β=1 elliptical 9-cell		13.5 MV/m				
ALPI	ions	2	80 MHz	β=0.0255 RFQ	Nb	2-3 MV/m	cw	4.5 K	operation de-commissioned	LN Legnaro
		12	80 MHz	β=0.055 QW	Nb	4 MV/m				
		50	160 MHz	β=0.13 QW	Pb/Cu	2.7 MV/m				
		58	160 MHz	β=0.13 QW	Nb/Cu	4.8 MV/m				
DIAMOND	electrons	2	500 MHz	β=1 elliptical 1-cell	Nb	6.5 MV/m	CW	4.5 K	operation	Oxford
ELBE	electrons	1	1.3 GHz	β=1 elliptical 3½-cell	Nb	8 MV/m	cw	2 K	operation	HZDR
		4		β=1 elliptical 9-cell		9 MV/m				
ELETTRA	electrons	1	1.5 GHz	β=1 elliptical 2-cell	Nb	5 MV/m	CW	4.5 K	operation	Trieste
FLASH	electrons	56	1.3 GHz 3.9 GHz	β=1 elliptical 9-cell	Nb	20-30 MV/m	pulsed	2 K	operation	DESY
		4				14.5 MV/m				
ISOLDE	ions	12	101 MHz	β=0.063 QW	Nb/Cu	6 MV/m	cw	4.5 K	operation	CERN
		20		β=0.103 QW	-					
LHC	protons, ions	16	400 MHz	β=1 elliptical 1-cell	Nb/Cu	6 MV/m	CW	4.5 K	operation	CERN
S-DALINAC	electrons	1	3 GHz	β=0.85 elliptical 2-cell		5 MV/m		CW 2 K	operation	Darmstadt
		1		β=1 elliptical 5-cell	Nb	5 MV/m				
		10		β=1 elliptical 20-cell		5 MV/m				
SLS	electrons	1	1.5 GHz	β=1 elliptical 2-cell	Nb	5 MV/m	CW	4.5 K	operation	PSI
SOLEIL	electrons	4	352 MHz	β=1 elliptical 1-cell	Nb/Cu	6 MV/m	CW	4.2 K	operation	SOLEIL
BERL inPro	electrons	1	1.3 GHz	β=1 elliptical 1½-cell	Nb		cw	2 K	construction	HZB
		3		β=1 elliptical 2-cell		20 MV/m				
		3		β=1 elliptical 7-cell		18 MV/m				
E-XFEL	electrons	808	1.3 GHz 3.9 GHz	β=1 elliptical 9-cell	Nb	24 MV/m	pulsed	2 K	construction	Hamburg
		8				15 MV/m				Ŭ
IFMIF-EVEDA	D+	8	175 MHz	β=0.094 HW	Nb	4.5 MV/m	CW	4.5 K	construction	Rokkasho
SPIRAL2	D+, ions $A/Q = 3$	12	88 MHz	β=0.07 QW	Nb	6.5 MV/m	cw	4.2 K	construction	GANIL
	2.,	14		β=0.12 QW		6.5 MV/m			CONSCIONT OF	S. I.I.C
ESS	protons	28	352 MHz	β=0.5 double spoke	Nb	8 MV/m	pulsed 4.5		design	Lund
		64	704 MHz	β=0.7 elliptical 5-cell		15.5 MV/m		4.5 K		
		112	704 MHz	β=0.9 elliptical 5-cell		18.2 MV/m				