
Fermilab **ENERGY** Office of Science

PIP2IT Plans and Accomplishments

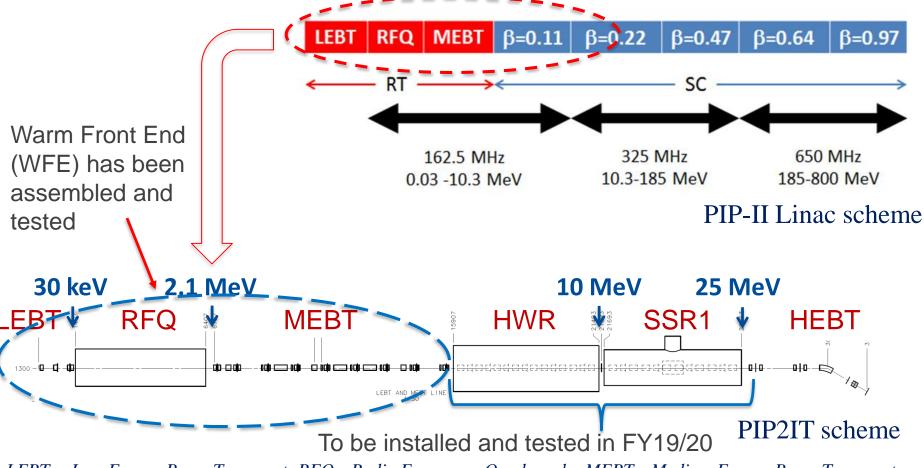
Accelerator Support Systems

Alexander "Sasha" Shemyakin PIP-II DOE Independent Project Review 12-14 December 2017

In partnership with: India/DAE Italy/INFN UK/STFC France/CEA/Irfu, CNRS/IN2P3

Outline

- Introduction to PIP2IT
- PIP2IT warm front end
- Achievements
- Plans
- Summary


About Me:

- Role in PIP-II: PIP2IT group leader
 - With PIP-II project since 2011, working with the Warm Front End
- Relevant Experience
 - Worked with accelerators for 35 years
 - 20 years at Fermilab. Development and operation of 4 MeV Electron Cooler

PIP-II and PIP-II Injector Test (PIP2IT)

• PIP2IT: a test accelerator representing the PIP-II front end

LEBT = Low Energy Beam Transport; RFQ= Radio Frequency Quadrupole; MEBT= Medium Energy Beam Transport; HWR = Half-Wave Resonator; SSR1=Single Spoke Resonator; HEBT = High Energy Beam Transport

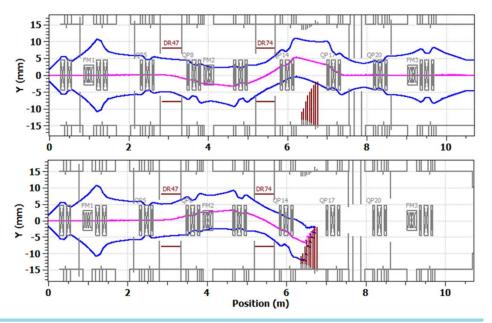
PIP2IT: Testing one-of-a-kind elements of PIP-II

- Variety of different accelerator structures
 - Ion source (30 keV),
 - RFQ (2.1 MeV),
 - HWR (10 MeV),
 - SSR1 (25 MeV)

• Bunch-by-bunch selection scheme (next slide)

Mission Statement (see P. Derwent's presentation):

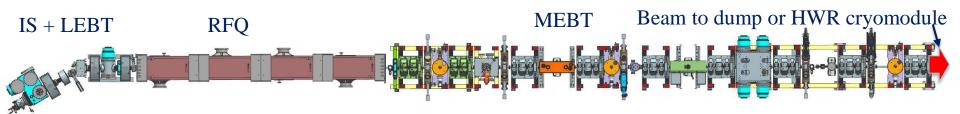
- The PIP-II Injector Test (PIP2IT) facility replicates the front end of the PIP-II linac through the first SSR1 cryomodule. PIP2IT is intended to serve as a complete systems test that will reduce technical risks associated with the PIP-II linac in both pulsed and CW operating modes.
- PIP2IT FRS ED0001223



🛟 Fermilab

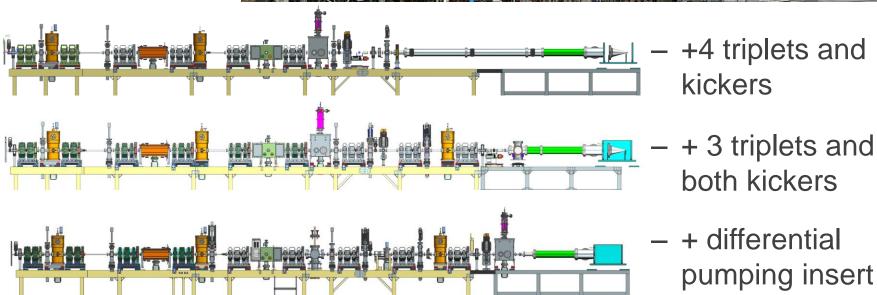
Unique feature of PIP-II: flexible bunch structure

- "Bunch-by-bunch selection" in MEBT allows removing unneeded bunches
 - Effective injection into the Booster
 - With an RF separator at the end of the linac, possibility to deliver quasi-simultaneously to different users the beam with very different time structure
- The selection scheme is being tested at PIP2IT
 - Chopping system: Two kickers working in sync and absorber.
 - 6σ separation at absorber


Simulated 3σ envelopes of passed (top) and removed (bottom) bunches.

Presently assembled: PIP2IT WFE

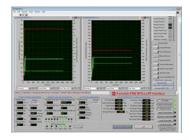
- 30 keV, 15 mA H⁻ Ion Source (from 5 µs to DC)
- LEBT (3 solenoids; 30° bend to accommodate 2 ion sources in PIP-II)
 Chopper to form macro-pulses
- CW-compatible 2.1 MeV RFQ (produced by LBNL)
- 10-m long MEBT with fast chopper
 - 2 quadrupole doublets and 7 triplets (produced by BARC, India)
 - 3 bunching cavities
 - Collimation system (4 sets x 4 scraper plates)
 - Differential pumping system

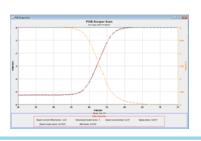


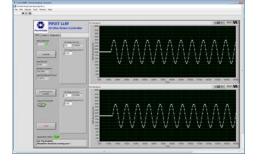
Several stages

• Adding equipment in pace with delivery and budget

- Ion Source + LEBT in several versions
 - Addition of RFQ + two-doublets MEBT

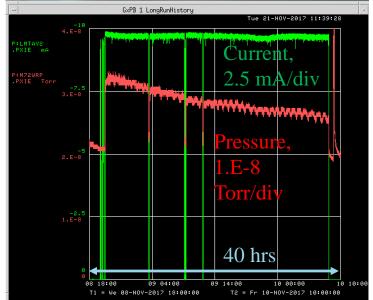

(present assembly)


"CDR parameters" and high duty factor operation


- PIP-II: "CW-compatible linac working initially in a pulse mode"
- Philosophy for PIP2IT
 - Design all elements intended to be used at PIP-II as CWcompatible but focus on operation at "CDR parameters"
 - "CDR parameters" = parameters required for future injection into the Booster: 0.54 ms x 20 Hz at 5 mA from the RFQ with about half of all bunches removed in MEBT to create a non-periodic pattern optimized for filling the Booster RF buckets
 - Test at higher duty factors, up to CW, when it is compatible with pursuing the main goal
 - address discovered issues

Achievements

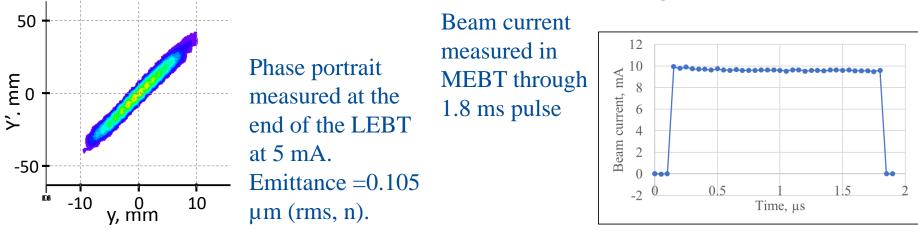
- Beam at "CDR parameters" through a full-length MEBT
- LEBT with un-neutralized section
- RFQ reliably operating at CDR parameters
- CW compatible MEBT
- Prototype elements of the fast chopping system
- CW-compatible Machine Protection System
- Diagnostics
- And other development that will not be presented here, e.g.
 - LLRF, control programs, 20 Hz operation ...



Beam through a full-length MEBT

- Operation of most WFE components at CDR parameters have been demonstrated
 - Beam was passed through the full-length MEBT with one kicker producing a required deflection pattern
 - 0.54 ms x 20 Hz x 5 mA; about half of all bunches are deflected
 - 24 hours continuous run with both passed and deflected bunches transported to the beam dump
 - Beam with a higher duty factor was passed through the full-length MEBT and deposited to the absorber prototype for 35 hours
 - 1.75 ms x 20 Hz x 10 mA; with kickers off

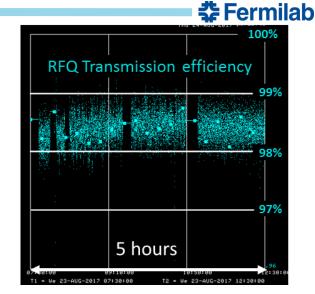
Beam current and MEBT pressure during the 35-hrs long run of the beam to the absorber prototype.

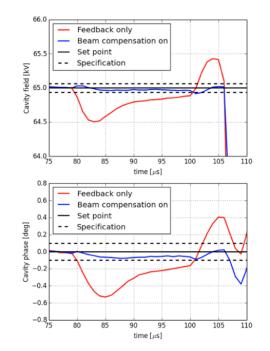


LEBT with un-neutralized section

- Downstream portion of the LEBT is not neutralized
 - With scraping near the ion source and proper focusing, the beam emittance remains low, and beam parameters at the RFQ entrance are optimal
 - Vacuum at the RFQ entrance stays below 2.10⁻⁷ Torr with beam
- Since the LEBT chopper is located in this section, beam parameters stays constant through the MEBT pulse

Tuning made with 10 µs pulses work for long-pulse operation

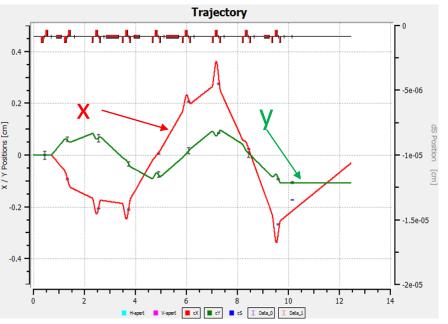


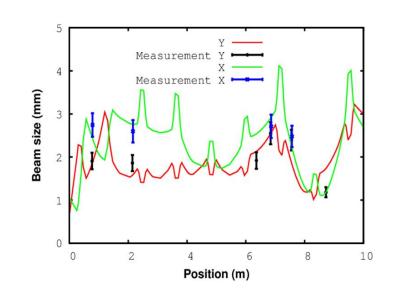


RFQ

- RFQ works reliably at CDR parameters
 - Includes amplifiers, LLRF, and cooling system
 - > 95% transmission
 - transverse emittance ≤0.2 µm (n rms)
 - Energy is as specified, $2.11 \pm 0.5\%$ MeV
- Some of remaining issues
 - Frequency offset (fixed tuners need to be re-machined)
 - Couplers are not compatible with CW

Measured RFQ voltage waveforms with $20 \ \mu s$, 5 mA beam. With LLRF feed-forward, feedback, and beam compensation loops on, regulation is at 0.1% amplitude and 0.1° level.




🛟 Fermilab

MEBT optics

- Transverse optics is measured and in reasonable agreement with simulations
 - Can predict the beam envelope at ~10% level

Comparison of simulated and measured beam trajectory responses to deflection with the first dipole corrector.


Comparison of simulated and measured beam envelopes. Beam current is 5 mA.

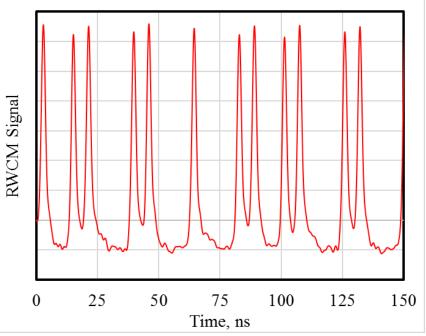
Chopping system

- Two kickers working in sync and absorber
- Since a CW-compatible kicker capable of providing an arbitrary pattern was beyond state-of-the-art, two kicker versions were developed, "200 Ohm" and "50 Ohm"
 - Both are installed; 200 Ohm kicker is fully characterized with beam
- Absorber prototype has been developed and tested at full power density with an electron beam and at 7x CDR parameters at PIP2IT

200 Ohm kicker

50 Ohm kicker

¹/₄ length absorber prototype



‡ Fermilab

200 Ohm kicker performance

- Completely satisfies CDR requirements
 - 500 V per plate generates 7 mrad deflection
 - Generates non-periodic pattern required for Booster injection
 - Tested with beam in 24-hr run at 0.54 ms x 20 Hz, with switching frequency equal to Booster injection frequency, 44.7 MHz
- The choice for the final kickers

Example of bunch pattern formed by the MEBT chopping system and recorded with Resistive Wall Current Monitor (portion of 10 μ s pulse). The 5 mA beam is collimated to 1.5 mA and deflected by 200 Ohm kicker to a scraper. Population left of removed bunches is < 2%. Non-zero signal between neighboring passed bunches is determined by properties of RWCM.

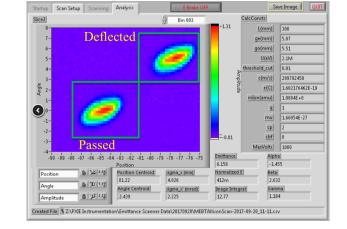
Machine protection system development

- The beam is interrupted when MPS detects unfavorable conditions
 - Controls pulse width
 - Vacuum, position of valves and insertable devices
 - Beam loss between current detectors
 - MPS employs dedicated capacitive pickups
 - Presently can protect from 3% unexpected beam loss

Capacitive pickup for MPS

‡ Fermilab

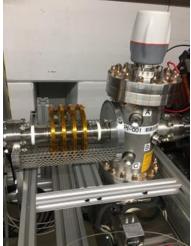
Diagnostics


- Beam current
 - Toroids (ACCT) measure with 2% accuracy
 - Currents to dump, scrapers, protection electrodes are measurable in 1 µs steps
 - RWCM to measure removal of bunches
- BPMs for position and phase

MEBT Allison scanner under assembly

- Scrapers are used for envelope measurements
- Allison emittance scanners in LEBT and MEBT
 - Successful implementation at 2.1 MeV is unique

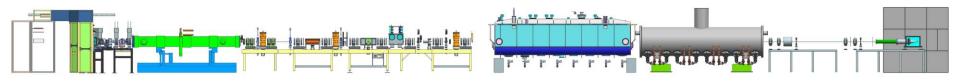
Example of MEBT Allison scanner measurement. 3 μ s slice of 10 μ s pulse. The 5 mA beam is collimated to 1.5 mA and deflected by 200 Ohm kicker.



Main items remaining for PIP2IT WFE

- Test the Differential Pumping System with beam
 - Recently installed
- Manufacture and test the chopping system
 - final kickers and absorber
- Address RFQ issues
 - adjust resonance frequency
 - Address coupler issues

- Differential Pumping Insert installed in MEBT
- Assemble and test the vacuum protection system
- Assemble UHV, particle free portion of the MEBT adjacent to HWR



Plans

- FY18- finish the beam run in WFE—only configuration
 - Start installation of the cryo distribution system in Q3 FY18
- Q3FY19 start installation of HWR, followed by SSR1
 - Cool down and test all cavities at full gradient finish in Q1FY20. HWR in CW; SSR1 in both CW and pulse
- FY21/22 pass the "CDR-parameters" beam through SRF
 Test all remining items in the Warm Front End
- FY24 WFE is moved to PIP-II
 - Cave is used for testing of SSR1 and SSR2 through FY26

PIP2IT in its final configuration

Summary

- PIP2IT is an important and fruitful test bed for PIP-II front end
 - Solutions for most of WFE components are found and tested
 - Some of them are novel and unique
- Most of CDR WFE parameters are demonstrated
- Plans for the front end to be ready for installation into PIP-II are developed

• Thank you for your attention

