

International Collaboraton View from INFN

Carlo Pagani – Univ. of Milano & INFN-LASA PIP-II CD-1 Independent Project Review 12-14 December 2017

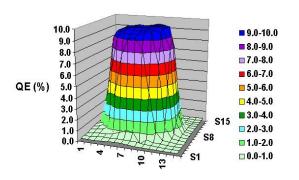
In partnership with:
India/DAE
Italy/INFN
UK/STFC
France/CEA/Irfu, CNRS/IN2P3

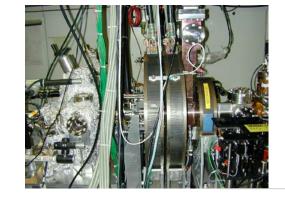
Outline

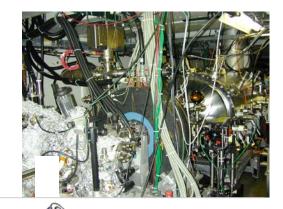
- Context: long tradition of Fermilab and INFN collaboration
 - Physics
 - Accelerators: TESLA, ILC, S1-Global, ...
- Other SRF experience at INFN-LASA:
 - LEP-II with Industry
 - ADS: beam dynamics, reliability, elliptical cavities, ...
 - SNS cavity design
 - European XFEL: cold masses, cavities, 3H module, ...
 - ESS: 36 MB cavities, dressed and qualified
 - PIP-II: in progress!

INFN and Fermilab Collaboration

- INFN and Fermilab have a long tradition of fruitful collaboration on High Energy Phys. and accelerator physics and tecnology
- INFN Scientists spent years at Fermilab contributing to the top discovery (Tevatron)
- INFN Scientists are participating in the Fermilab neutrino and muon programs
- INFN/Fermilab joint effort in TESLA contributed significantly to the setting of the modern SRF tecnology.
- After the Cold Recommendation for the global Linear Collider, INFN-LASA helped Fermilab to setup ILC SRF Infrastructures.
- Fermilab and INFN-LASA jointly contribute to the S1-Global experiment at KEK

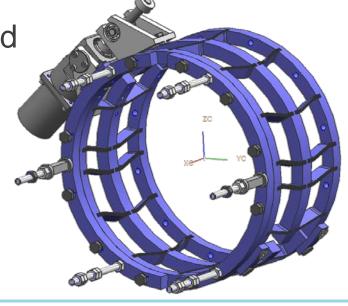





ILC Components coming from INFN - 1

Cs₂Te Photocathode system – in operation since August 1997

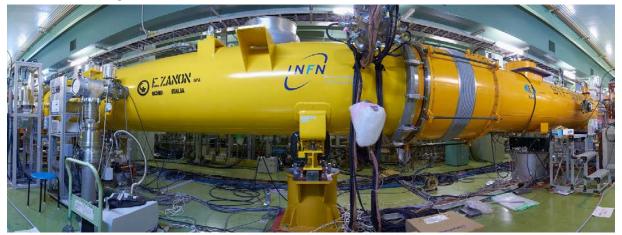
for the A0 test facility



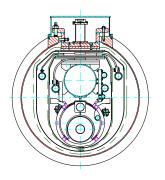
 A set of INFN blade-tuners developed to improve the ILC filling factor

ILC Components coming from INFN - 2

 Cryomodule assembling tools, developed by INFN-LASA for TESLA/XFEL and globally distributed for ILC and LCLS-II


ILC Components coming from INFN - 3

 Second Cold mass to be equipped with Fermilab 'short' cavities and INFN Blade tuners

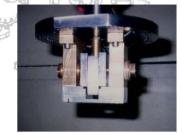

Special 4 cavity Module and tuners for S1-Global at KEK

Half of the cold masses (INFN Design)

TTF **Cryomodule Design**

Three "generations" of the cryomodule design, with increasing simplicity and decreasing costs

"Finger Welded" Shields


Cryomodule Charactteristics

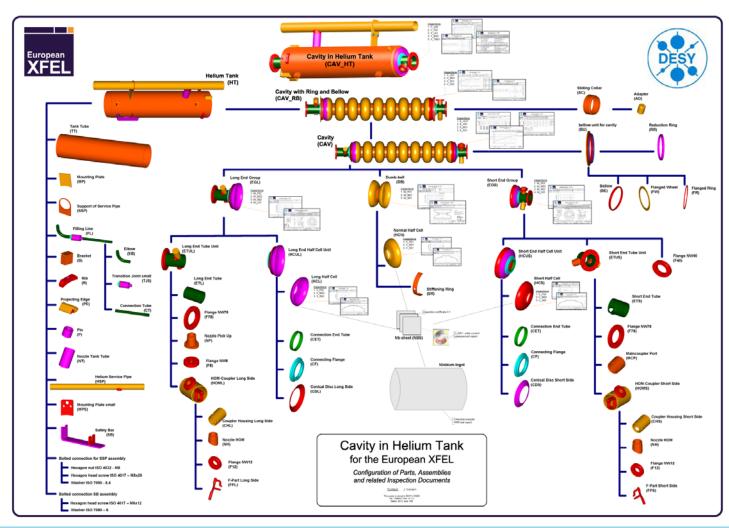
12 m Length # cavities # doublets 1.5 W Static Losses @ 2 K @ 5 K

@ 50 K

Simplified alignement Strategy

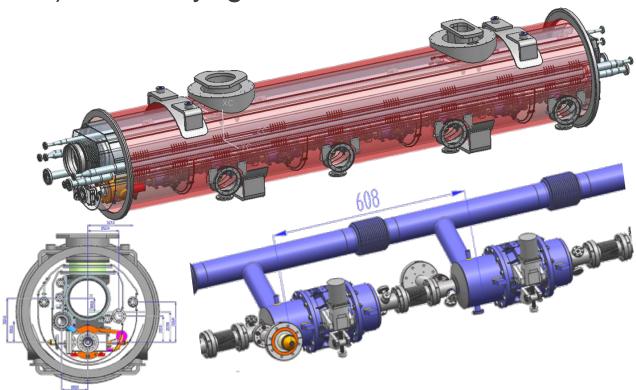
Sliding Fixtures @ 2 K

Qualification tests in LASA

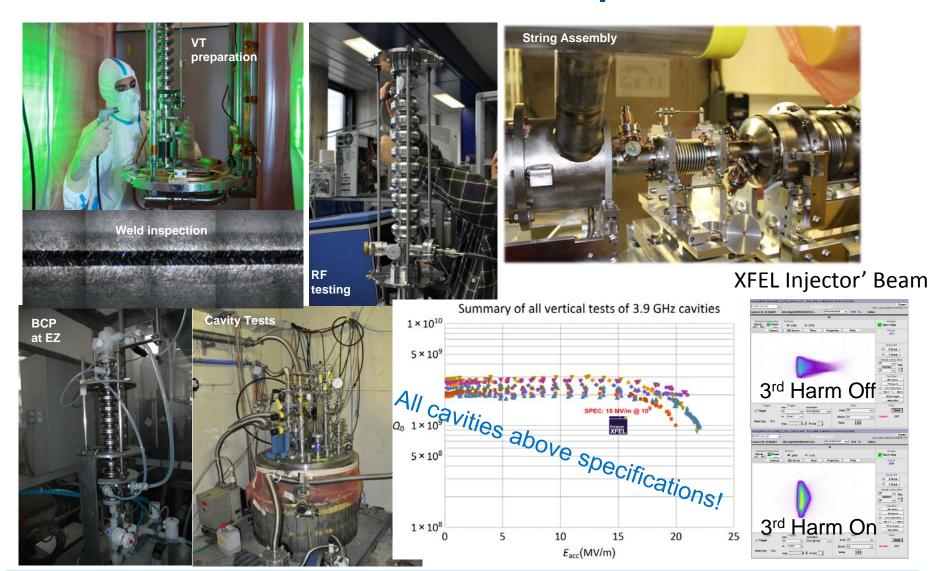


70 W

Half of the 800+ 1.3 GHz SRF cavities: bulk EP + final BCP



 The Third Harmonic Cryomodule: INFN Design, inspired on FLASH (Fermilab). FPC, cryogenics. and RF from DESY.



- alternating Power Couplers for kick compensation. Lateral 2-phase He line.
- "slim" type Blade tuner derived by INFN ILC tuner.
- 3rd harmonic module "Plug compatible" with XFEL standard modules.

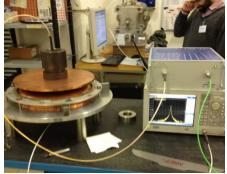
Recent Work at INFN-LASA: European XFEL Istituto Nazionale di Fisica Nucleare

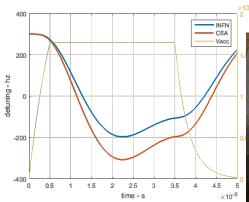
36 medium beta cavities

- Cavity fabrication of 36 medium beta cavities in the industry, including treatments, tuning, Helium tank integration. Full treatment at the vendor.
- Certification activities, documentation, ancillaries
- Cold test in a qualified infrastructure (DESY).
- Transportation in special boxes and delivery at CEA cryomodule assembling facility.

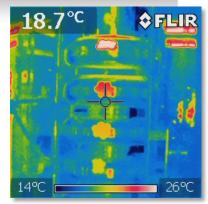
	352.21 MHz		_			
←2.4 m→	←4.6 m→ ←3.8 m→	€ 39 m → €	56 m → ← 77	$m \rightarrow \leftarrow 1$	179 m → ← 241 m →	
Source + LEBT	RFQ + MEBT +	DTL >S	pokes + Medi	um β → F	High β → HEBT & Contingency H	Target
Ŷ	Ŷ		Ŷ	Ŷ	Ŷ	
75 keV	3.6 MeV	90 MeV	216 MeV	561 MeV	2000 MeV	

MB cavity technical requirements				
Frequency (MHz)	704.42			
Number of cells	6			
Geometric beta	0.67			
Nominal Acc. Gradient (MV/m)	16.7			
E _{peak} (MV/m)	< 45			
RF peak power (kW)	1100			
Q external	5.9-8 10 ⁵			
Q ₀ at nominal gradient	> 5 10 ⁹			



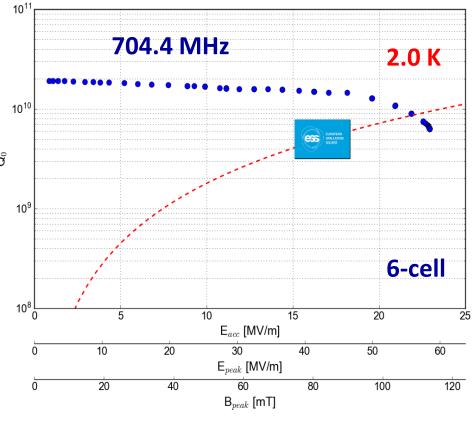





F=1742.4 MHz Max R/Q=230hm Qext=9.6x10^5 **HOM** analyses

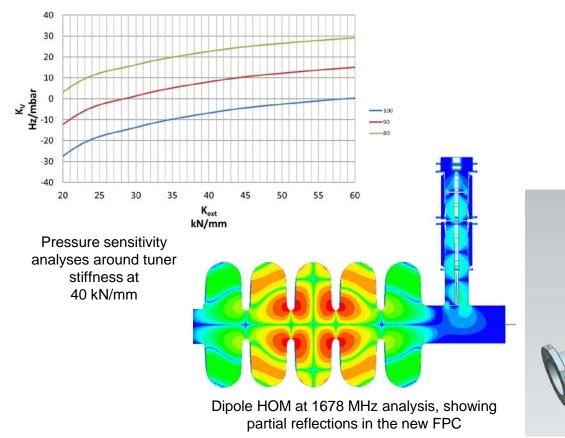
Dynamical analyses: natural modes

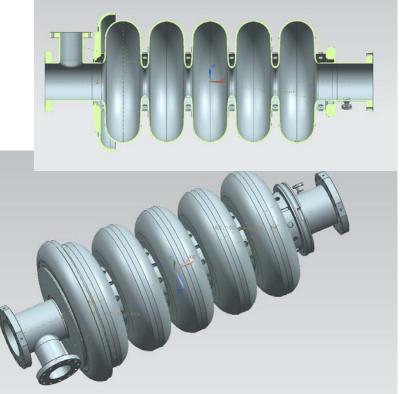
LFD from cavity simulator


Present Work at INFN-LASA: ESS Tests at 2 K

Test well above specs
Series Production approved
All major orders recently placed

INFN & PIP-II

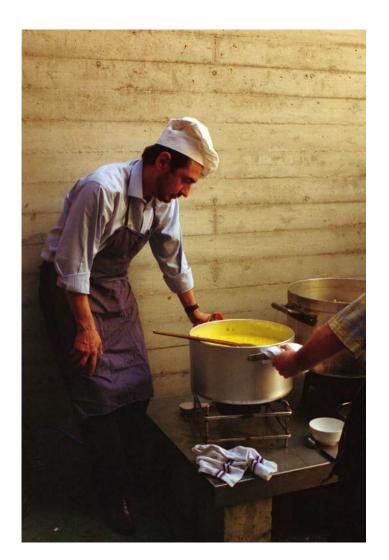

- Well in the frame of the long term fruitful Collaboration between Fermilab and INFN.
- Nicely included in the scientific activities envisaged in the Implementing Agreement signed by DoE and Italian Ministry of Education, University and Research (MIUR) (17.07.2017).
- Neutrino Physics and related high power proton accelerators are specifically mentioned in the Project Annex signed by DoE and MIUR on the same day (17.07.2017).
- Green light from MIUR for an Italian participation to the realization of PIP-II through an in kind contribution mediated by INFN LASA and specifically funded by MIUR/MAECI.
- The envisaged contribution nicely matches with the INFN LASA expertise and it's welcome by the LASA scientists.



INFN & PIP-II – work so far

- Several alternative designs have been developed for the LB650 cavity
- The final version from INFN-LASA has been chosen for PIP-II as the best compromise between CW and pulsed operation performances.




Prototype ready for manufacturing

From the 1995 TTC Meeting in Milano

