Fermilab **ENERGY** Office of Science

121.3.5-6 Linac - SSR1, SSR2

SC Acceleration Modules and Cryogenics

Donato Passarelli PIP-II Independent Project Review 12-14 December 2017 In partnership with: India/DAE Italy/INFN UK/STFC France/CEA/Irfu, CNRS/IN2P3

Outline

- Overview of SSR1 (WBS 121.3.5) and SSR2 (121.3.6)
- Requirements
- Scope and Deliverables
- Design maturity
- Technical progress to Date
- Interfaces
- Organization
- ESH&Q
- Risk
- Cost
- Schedule
- Summary

About Me:

- Donato Passarelli, PhD
- L3 Manager for WBS 121.3.5, .6 (SSR1, SSR2)
 - Since 2010 working in Technical Division, SRF Dept.
 - SSR1 cavities, tuners and cryomodule

121.3.5-6 SSR1, SSR2: Overview

ΜΕΒΤ β=0.11 β=0.22 β=0.47

🛟 Fermilab Charge #2

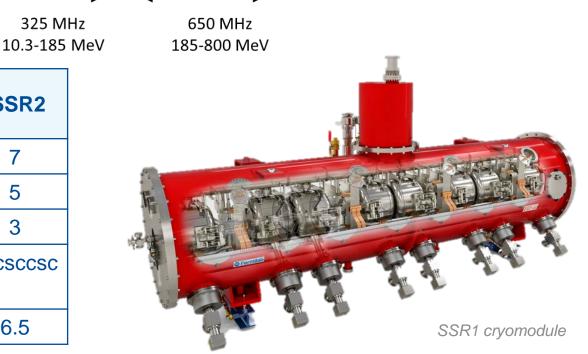
PIP-II Conceptual **Design Report:** DocDb# 113

	SSR1	SSR2
# CMs	2	7
Cavities per CM	8	5
Solenoids per CM	4	3
CM configuration c: cavities; s: solenoids	4x (csc)	SCCSCCSC
CM length (m)	5.2	6.5

162.5 MHz

0.03 -10.3 MeV

SSR: Single Spoke Resonator


RFQ

RT

LEBT

DC

0.03 MeV

SSR CMs capable of operating in both pulsed and CW modes with a beam current of 2 mA avg.

β**=0.61**

β**=0.92**

325 MHz

121.3.5 SSR1: Requirements

Functional Requirement Specification (FRS) are defined and traceable in Teamcenter:

- SSR1 cryomodule: TC# ED0001316
- SSR1 cavities: TC# ED0001317

Cavity operational/test requirements

Parameter	Value
Operating mode	Pulsed with CW capability
Aaximum Beam Current	5 mA
Max Leak Rate (room temp)	$< 10^{-10}$ atm-cc/sec
perating cavity gradient $\mathbf{G}_{acc} = \mathbf{V}_{opt} / \mathbf{L}_{eff}$	10 MV/m
faximum gradient in VTS	$\leq 12 \text{ MV/m}$
perating temperature	2.0 K
Inloaded quality factor Q ₀	> 6.0.109
Dynamic RF power dissipation	< 3 W
perating LHe Pressure	30±5 mbar
Operating cavity Q-loaded/bandwidth	3·10 ⁶ / 108 Hz
ensitivity to LHe pressure fluctuations	< 25 Hz/mbar (dressed cavity)
orentz Force Detuning coefficient	$< 5 \text{ Hz/(MV/m)^2}$
ongitudinal stiffness	< 5 kN/mm
perating frequency tuning sensitivity	> 150 kHz/mm
ield Flatness in dressed cavity	> 90%
IAWP	2 bar (RT), 4 bar (2K)
perating input RF power CW	\leq 15 kW
Dperating field probe RF Power CW	100 – 500 mW
Multipacting	none within $\pm 10\%$ of operating gradient

Table of cryomodule requirements

General		
	Beam pipe aperture, mm	30
	Overall length (flange-to-flange), m	≤5.4
	Overall width, m	≤1.6
	Beamline height from the floor, m	1.3
	Cryomodule height (from floor), m	≤2.60
	Ceiling height in the tunnel, m	3.30
	Maximum allowed heat load to 35-50 K, W	255
	Maximum allowed heat load to 5 K, W	80
	Maximum allowed heat load to 2 K, W	50
	Maximum number of lifetime thermal cycles	50
	Intermediate thermal shield temperature, K	35-50
	Thermal intercept temperatures, K	5 and 35-5
	Cryo-system pressure stability at 2 K (RMS), mbar	~0.1
	Environmental contribution to internal field	<15 mG
	Transverse cavity alignment error, mm RMS	<1
	Angular cavity alignment error, mrad RMS	≤5
	Transverse solenoid alignment error, mm RMS	<0.5
	Angular solenoid alignment error, mrad RMS	<0.5
Cavities		
	Cavities per cryomodule	8
	Frequency, MHz	325
	β optimal	0.222
	Operating temperature, K	2
	Operating mode	CW and
	Operating mode	pulsed
	Operating energy gain at β =0.222, MV/cavity	2.05
	Maximum dynamic cavity heat load to 2 K, W (each, including coupler)	4
	Coupler power rating (TW, full reflection), kW	15

121.3.6 SSR2: Requirements

Functional Requirement Specification (FRS) are defined and traceable in Teamcenter:

- SSR2 cryomodule: TC# ED0001829
- SSR2 cavities: TC# ED0001854

Cavity operational/test requirements

Parameter	Value
Operating mode	Pulsed with CW capability
Maximum Beam Current	5 mA
Max Leak Rate (room temp)	< 10 ⁻¹⁰ atm-cc/sec
Operating cavity gradient $G_{acc} = V_{opt}/L_{eff}$	11.4 MV/m
Maximum gradient in VTS	\leq 13 MV/m
Operating temperature	2.0 K
Unloaded quality factor Q ₀	> 8.0.109
Dynamic RF power dissipation	< 11 W
Operating LHe Pressure	30±5 mbar
Operating cavity Q-loaded/bandwidth	5.1·10 ⁶ / 64 Hz
Sensitivity to LHe pressure fluctuations	< 25 Hz/mbar (dressed cavity)
Lorentz Force Detuning coefficient	$< 2.8 \text{ Hz/(MV/m)^2}$
Longitudinal stiffness	< 5 kN/mm
Operating frequency tuning sensitivity	> 150 kHz/mm
Field Flatness in dressed cavity	> 90%
MAWP	2 bar (RT), 4 bar (2K)
Operating input RF power CW	\leq 30 kW
Operating field probe RF Power CW	100-500 mW
Multipacting	none within $\pm 10\%$ of operating gradient

Table of cryomodule requirements

General		
	Beam pipe aperture, mm	40
	Overall length (flange-to-flange), m	≤6.5
	Overall width, m	≤1.6
	Beamline height from the floor, m	1.3
	Cryomodule height (from floor), m	≤2.60
	Ceiling height in the tunnel, m	3.30
	Maximum allowed heat load to 35-50 K, W	250
	Maximum allowed heat load to 5 K, W	80
	Maximum allowed heat load to 2 K, W	75
	Maximum number of lifetime thermal cycles	50
	Intermediate thermal shield temperature, K	35-50
	Thermal intercept temperatures, K	5 and 35-50
	Cryo-system pressure stability at 2 K (RMS), mbar	~0.1
	Environmental contribution to internal field	<15 mG
	Transverse cavity alignment error, mm RMS	<1
	Angular cavity alignment error, mrad RMS	≤5
	Transverse solenoid alignment error, mm RMS	<0.5
	Angular solenoid alignment error, mrad RMS	<0.5
	Beam duration for operation in pulsed regime, ms	≤1
	Repetition rate for operation in pulsed regime, Hz	≤20
Cavities		
	Cavities per cryomodule	5
	Frequency, MHz	325
	β optimal	0.475
	Operating temperature, K	2
	Operating mode	CW & pulsed
	Operating energy gain at β =0.475, MV/cavity	5
	Maximum dynamic cavity heat load to 2 K, W (each,	12
	including coupler)	
	Coupler power rating (TW, full reflection), kW	30

121.3.5 SSR1: Scope and Deliverables

• WBS Dictionary: pip2-docdb # <u>599</u>

121.3.05 Linac - Single Spoke Resonator 1 (SSR1) This WBS entry covers design, procurement, fabrications and testing of the Single Spoke Resonator type 1 cavities and cryomodules. Final scope will be delivery of 2 tested CMs for installation.

- 121.3.5.2 Project management and coordination
 - BOE document: docdb # <u>384</u>
- 121.3.5.3 SSR1 1st Prototype Cryomodule
 - BOE document: docdb # <u>387</u>, <u>393</u>, <u>396</u>
- 121.3.5.4 SSR1 2nd Production CryoModule
 - BOE document: docdb # <u>399</u>, <u>402</u>, <u>405</u>

🛟 Fermilab

121.3.5 SSR1: Scope and Deliverables

- 121.3.5.2 Project management and coordination
 - Travel costs for management and vendor visits
- 121.3.5.3 SSR1 1st Prototype CM
 - FNAL scope:
 - Qualification of 8 jacketed cavities with coupler and tuner
 - Complete design, procurement, QA/QC and integration of all cryomodule components
 - RF testing and verification of cryomodule performance at PIP2IT
 - DAE (BARC/IUAC) deliverables:
 - Delivery of 2 dressed cavities
 - FNAL deliverables:
 - delivery of tested SSR1 1st CM for installation at PIP-II tunnel
- 121.3.5.4 SSR1 2nd Production CM
 - FNAL scope:
 - Finalization of design and procedures using lessons learned from CM #1
 - Procurement, QA/QC and testing, and integration of the full cryomodule
 - RF testing and verification of cryomodule performance at PIP2IT
 - FNAL deliverables:
 - delivery of tested SSR1 2nd CM for installation at PIP-II tunnel

🛟 Fermilab

121.3.6 SSR2: Scope and Deliverables

• WBS Dictionary: pip2-docdb # <u>599</u>

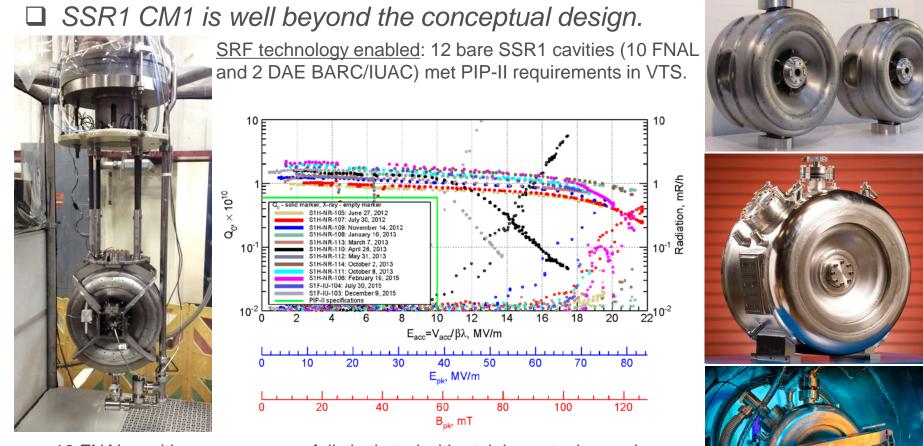
121.3.06 Linac - Single Spoke Resonator 1 (SSR2) This WBS entry covers design, procurement, fabrications and testing of the Single Spoke Resonator type 2 cavities and cryomodules. Final scope will be delivery of 7 tested CMs for installation.

- 121.3.6.2 Project management and coordination
 - BOE document: docdb # <u>423</u>
- 121.3.6.3 SSR2 1st Prototype CryoModule
 - BOE document: docdb # <u>426</u>, <u>429</u>, <u>432</u>
- 121.3.6.4 SSR1 2nd-7th Production CryoModule
 - BOE document: docdb # <u>438</u>, <u>441</u>, <u>444</u>

🛟 Fermilab

121.3.6 SSR2: Scope and Deliverables

- 121.3.6.2 Project management and coordination
- 121.3.6.3 SSR2 1st Prototype CryoModule
 - FNAL scope:
 - Design, analysis, reviews, procurement, QA/QC, device design verification testing, and integration of 5-cavity cryomodule.
 - Support DAE partners (BARC) in design and fabrication of their deliverables
 - RF testing and verification of cryomodule performance at PIP2IT
 - DAE (BARC) deliverables:
 - Design of bare and jacketed cavities
 - 2 prototype jacketed cavities for qualification at FNAL, 1 tuner, 3 couplers, 3 solenoids and BPMs
 - FNAL deliverables: delivery of qualified SSR2 1st CM for installation at PIP-II tunnel
- 121.3.6.4 SSR2 2nd-7th Production CryoModule
 - FNAL scope:
 - Finalization of design and procedures using lessons learned from CM #1
 - Support DAE partners (BARC) in design and fabrication of their deliverables
 - Procurement, QA/QC and testing, and integration of the full cryomodules
 - RF testing and verification of 2nd-7th cryomodule performance at PIP2IT
 - DAE (BARC) deliverables:
 - 18 jacketed cavities, 19 tuners, 17 couplers, 18 solenoids and BPMs
 - FNAL deliverables: delivery of qualified SSR2 2nd-7th CM for installation at PIP-II tunnel



Fermilab

121.3.5 SSR1: Cavities Design Maturity

Charge #2

🛟 Fermilab

- 10 FNAL cavities were successfully jacketed with stainless steel vessels showing a very low df/dp
- 2 DAE BARC cavities are currently receiving the He- vessel
- Current activities: qualification of jacketed cavities by cold testing at Spoke Test Cryostat (STC) to meet SSR1 cavities FRS (TC# ED0001317)

12 12/12/2017 D. Passarelli | 121.3.5-6 Linac - SSR1, SSR2 | SC Acceleration Modules and Cryogenics

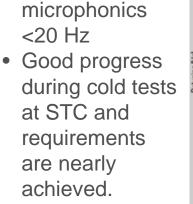
121.3.5 SSR1: Tuner and resonance control

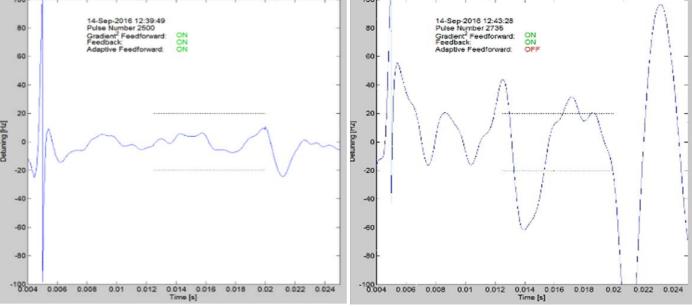
Prototype SSR1 tuner

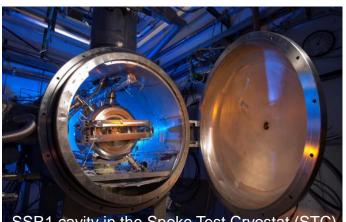
- Design completed and one unit was prototyped
- Successfully tested at 293K and cold temperature

Production SSR1 tuner

Design completed


Resonance


control studies


• Requirements:

 1 out of 10 units was received and currently used for resonance control of SSR1 cavities

Charge #2

121.3.5 SSR1: Solenoid, BPMs, couplers

TC# ED0001264

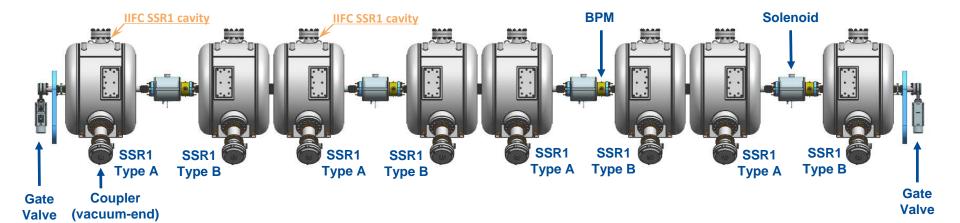
Four production solenoids were successfully designed, procured and <u>qualified</u>.

□ Four production BPMs were successfully designed, procured and <u>qualified</u>.

Joint collaboration ANL &FNAL

TC# ED0005680

Prototype main power couplers


- Design, procurement and testing: completed
- Three prototypes were procured and successfully tested

Production main power couplers

- Design completed
- Procurement: in progress
 - The procurement of coupler antennas presented a series of technical issue that led them to be on the SSR1 CM1 <u>critical path</u>.

121.3.5 SSR1: cavity string assembly

□ Free particle assembling procedure for cleanroom activity at Lab 2

‡ Fermilab

Charge #2

121.3.5 SSR1: CM Design Maturity

SSR1 1st cryomodule

0 0

da

SSR1 coldmass

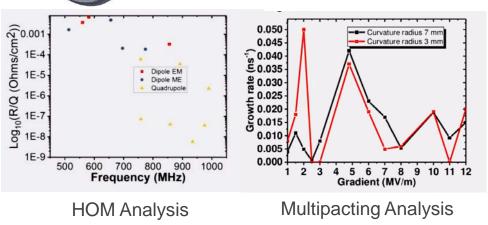
- Design: completed
- Assembly starts in July 2018

SSR1 final cryomodule

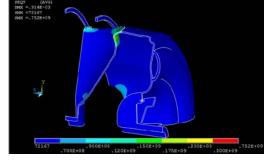
- Design: nearly completed
- Assembly starts in Nov. 2018

□ SSR1 2nd cryomodule

We are collecting lessons learned and list of improvements from the experience in designing and developing the SSR1 1st cryomodule.



Charge #2


121.3.6 SSR2: Design Maturity

- SSR2 cavities:
 - RF Design Initially developed by Fermilab
 - DAE (BARC) is currently working on mechanical design.
 - Bare Cavity Design Status Review held at BARC Nov 7th 2017
 - PDR at BARC is scheduled for March 2018

2

Structural analyses performed by BARC

SSR2 Electric and Magnetic fields

- Design of SSR2 cryomodule and components will be based on SSR1 experience.
- SSR2 Cavity & Cryomodule development is on the critical path for the SRF Linac because it is the least mature of the SRF CMs

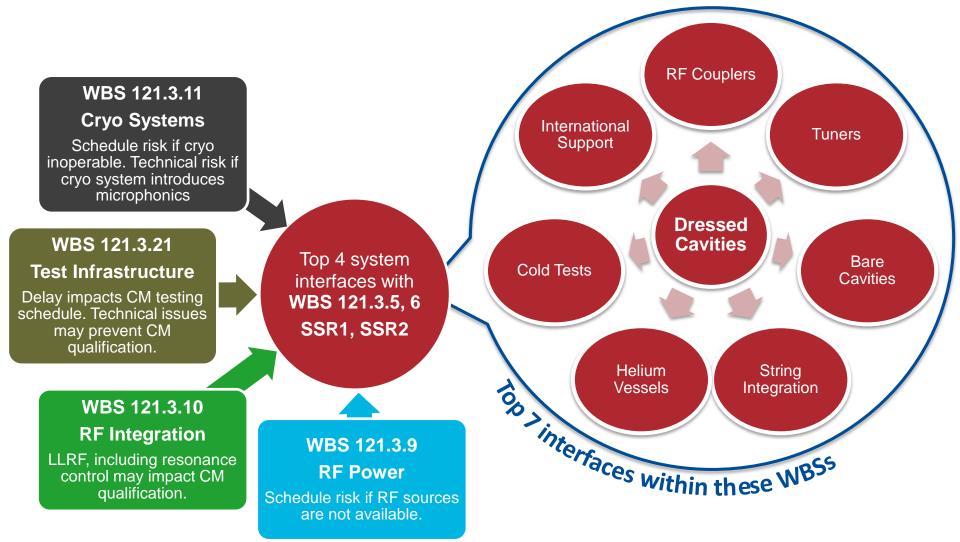
121.3.5,6 SSR1, SSR2: Design Review Plan Charge #2

- Critical component design review cycle
 CDR → FRS/TRS → PDR → FDR → PRR
- Critical Reviews are tracked in P6 as milestones.
- Non-critical components or subsystems are managed within the Division or Department review process as required by the FNAL Engineering Manual.
- Design reviews planned for Partner deliverables as appropriate to ensure technical and ESH&Q requirements are met. Partner milestones identified and implemented in P6.
- SSR1 1st cryomodule (WBS 121.3.5.3)
 - PDR, FDR and PRR of the key-components up to the string assembly were successfully held and documented.

121.3.5,6 SSR1, SSR2: Interfaces

WBS 121.3.5-.6 interface across the PIP-II WBS Matrix

Interfaces to SSR1	(121.3.5) and SSR2 (121.3.6)
121.3.4 – HWR (SSR1 only)	121.3.17 – Control Systems
121.3.5/.6 – SSR1/SSR2	121.3.18 – Vacuum
121.3.7 – LB650 (SSR2 only)	121.3.19 – General Supt. Serv.
121.3.9 – RF Power	121.3.20 – Safety Systems
121.3.10 – RF Integration	121.3.21 – Test Infrastructure
121.3.11 – Cryo Systems	121.3.22 – Install., Integ., and Comm
121.3.13 – Magnet PS	121.5 – Conventional Facilities
121.2.16 Poom Instrum	


121.3.16 – Beam Instrum.

- Technical interfaces are understood and are or will be under revision control and managed through Teamcenter.
 - 121.3.5 SSR1 external interfaces: TC# ED0004129, TC# F10051442
 - 121.3.5 SSR1 internal interfaces: TC# F10002433, TC # F10082628, and SSR1 team meetings (Indico link)

🛟 Fermilab

121.3.5,6 Interfaces – Technical/Schedule Impact

Charge #7

121.3.5,6 Interfaces - Partners

- Final Partner deliverables to be formalized in advance of CD-2.
- SPC/SPM and POC direct communication is essential to the success of this collaboration.
- Timely information and material transfer between stakeholders is essential to meet technical and schedule requirements. (By-weekly meeting, TC database)
- 121.3.5 SSR1 partner: DAE-BARC/IUAC
 fabrication of two dressed cavities
- 121.3.6 SSR2 partner: DAE-BARC
 - Bare and dressed cavities design and production
 - Tuners design and fabrication
 - Solenoids, leads and BPS design and fabrication

121.3.5,6 SSR1, SSR2: Organization

- FNAL L3 Manager Assigned
 - Single L3 for SSR1 (121.3.5) and SSR2 (121.3.6)
 - L4 technical POCs identified within the Technical Division org.
 - Support area staffing and POCs map directly to Technical Division org. chart: VTS testing, Cavity processing and Facilities, QA/QC, etc.
 - Organization is moving with good technical progress.
 - CM design team well-established and experienced.
- Partner organization is established in the DAE.

🛟 Fermilab

Charge #2, 4, 7

121.3.5, 6 SSR1, SSR2: ESH&Q

- Charge #5
- Project team is committed to construct PIP-II in a safe, environmentally respectful, and cost efficient manner that meets our stakeholder's needs
- All activities will be in full compliance with the PIP-II Integrated Safety Management program defined in DocDB #141 & QA Plan (DocDB #142).
 - Laboratory and DOE standards and practices followed
 - Fermi ES&H Manual
 - Division/Area specific Hazards Analyses and Training
- Specific hazards in PHAR DocDB #140
 - Cryogenics exposure (Cavity/CM Testing)
 - ODH (Cavity/CM Testing)
 - Pressure vessel compliance (Cavity/CM warm&cold ops)
 - All SRF cavities must comply ES&H Manual Chapter 5031.6
 - Cryogenic lines must comply ASME B31.3 for Pressure Piping
 - Chemical/Acids (Cavity processing at ANL, controlled by ANL)
 - Radiation (Cavity/CM testing)
 - Material Handling
- International Risk Mitigation Strategy (DocDB #1201) to be implemented for inkind contributions.

Risk: SSR Cavity and CM

- SSR1 CM (1) Performance at PIP2IT does not meet technical requirements
- SSR2 CM (1) Performance at PIP2IT does not meet technical requirements
- SSR1 Cryomodule design modifications identified late in design cycle

Title		P * Impact (k\$) →	P * Impact (months)	Probability
SSR1 CM (1) Performance at PIP2IT does not meet technical	2 (M) - significantly substandard	433	2.8	40.00%
SSR2 CM (1) Performance at PIP2IT does not meet technical	2 (M) - significantly substandard	333	2.8	40.00%
SSR1 Cryomodule design modifications identified late in design cycle	2 (M) - significantly substandard	217	1.6	20.00%

🛟 Fermilab

🛟 Fermilab

Risk Mitigation: SSR1 CM (1) Performance at PIP2IT does not meet technical requirements

- SSR1 CM (1) designed to meet/exceed specifications
 - Structural, thermal and multiphysics finite element analyses
 - Dressed cavities with very low df/dp
 - Piping systems and pressure vessels designed to comply the ASME codes
 - Features to mitigate thermal acoustic oscillations and mechanical instabilities
- Pre-qualification of key-components
 - Cold testing fully integrated cavities with coupler and tuner
 - RF and structural/cryogenic performance
 - Resonance control studies
 - Assessment of field emission, multipacting, magnetic field, and other limiting factors
 - Testing solenoids, BPMs
 - QA/QC inspections at each critical step from manufacturing to final installation
- Integration of lessons learned about low beta cavities and cryomodule
 - Processing of cavity surfaces and cleanroom procedures
 - Handling of cavity string assembly, coldmass, cryomodule

121.3.5 SSR1: BOE Summary

‡ Fermilab

WBS Number	Title	Docdb #
121.3.5.2	SSR1 Project Management and Coordination	<u>384</u>
121.3.5.3.1	SSR1 1st CM Cavities	<u>387</u>
121.3.5.3.2 .3 and .4	SSR1 1st CM Integration and Assembly	<u>393</u>
121.3.5.3.5	SSR1 1st CM Test	<u>396</u>
121.3.5.4.1 and .2	SSR1 2nd CM Cavities	<u>399</u>
121.3.5.4.3 .4 and .5	SSR1 2nd CM Integration and Assembly	<u>402</u>
121.3.5.4.6	SSR1 2nd CM Test	<u>405</u>

All relevant BOE Documents (estimate roll-ups, WBS dictionaries, descriptions) exist and have been reviewed and approved.

121.3.6 SSR2: BOE Summary

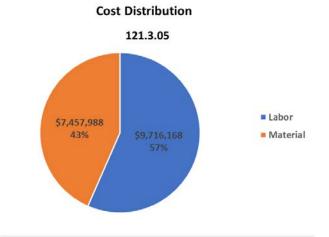
‡ Fermilab

WBS Number	Title	Docdb #
121.3.6.2	SSR2 PM and Coordination	<u>423</u>
121.3.6.3.1 and .2	SSR2 1st CM Cavities	<u>426</u>
121.3.6.3.3 .4 and .5	SSR2 1st CM Integration and Assembly	<u>429</u>
121.3.6.3.6	SSR2 1st CM Test	<u>432</u>
121.3.6.4.1 and .2	SSR2 2nd-7th CM Cavities	<u>438</u>
121.3.6.4.3 .4 and .5	SSR2 2nd-7th CM Integration and Assembly	<u>441</u>
121.3.6.4.6	SSR2 2nd-7th CM Test	<u>444</u>

All relevant BOE Documents (estimate roll-ups, WBS dictionaries, descriptions) exist and have been reviewed and approved.

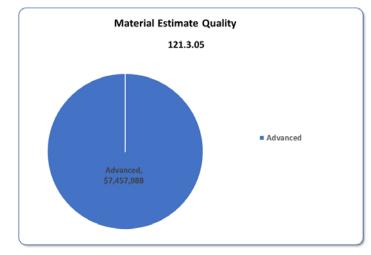
121.3.5 SSR1: Cost Summary

‡ Fermilab


Level 4 WBS - Name	Direct Hrs	Direct M&S	Full Burden+Esc	EUC	% EUC	Total Cost
121.3.05.02 - Linac - SSR1 - Project Management and Coordination	6,718	\$74,179	\$1,230,612	\$132,399	10.8%	\$1,363,007
121.3.05.03 - Linac - SSR1 - 1st Prototype CryoModule (1stCM)	25,471	\$1,318,134	\$5,457,926	\$1,091,574	20.0%	\$6,549,513
121.3.05.04 - Linac - SSR1 - 2nd Production CryoModule (2ndCM)	32,674	\$4,160,736				\$12,696,128
Grand Total	64,863	\$5,553,049	\$17,174,156	\$3,434,461	20.0%	\$20,608,648

Full Burden + Esc = BOE + Escalation + Overhead

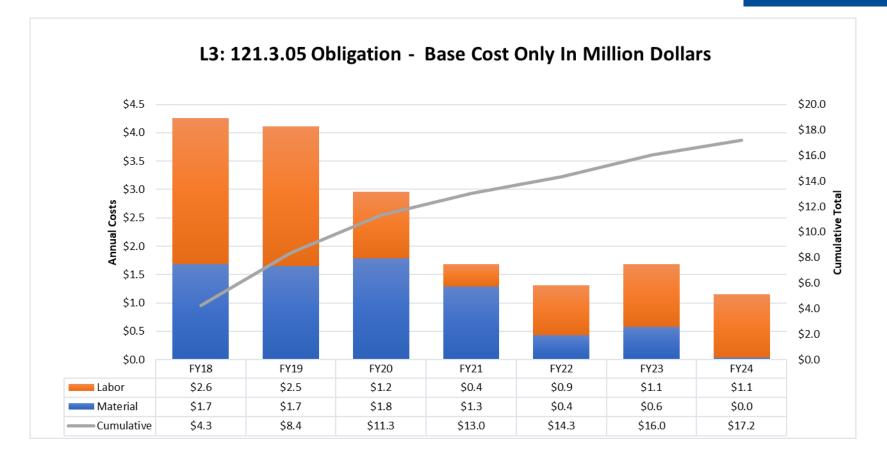
- P6 generated cost table
- Estimates and activities developed down to the L8 for SSR1 CMs.



121.3.5 SSR1: Cost Distribution and Estimate Quality

- "Preliminary estimation": based on similar work (ILC, LCLS-II)
- "Advanced estimation": based on nearly identical work (SSR1)

Costs = BOE + Overheads + Escalation Estimate Quality Categories are per FermilabStandards and descriptions can be found in Docdb item number 345

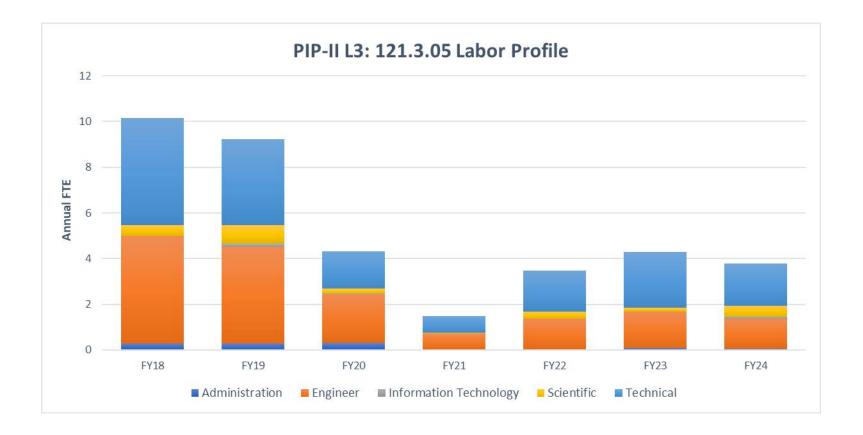


辈 Fermilab

121.3.5 SSR1: Obligation Profile – P6 Base Cost Only

Charge #3

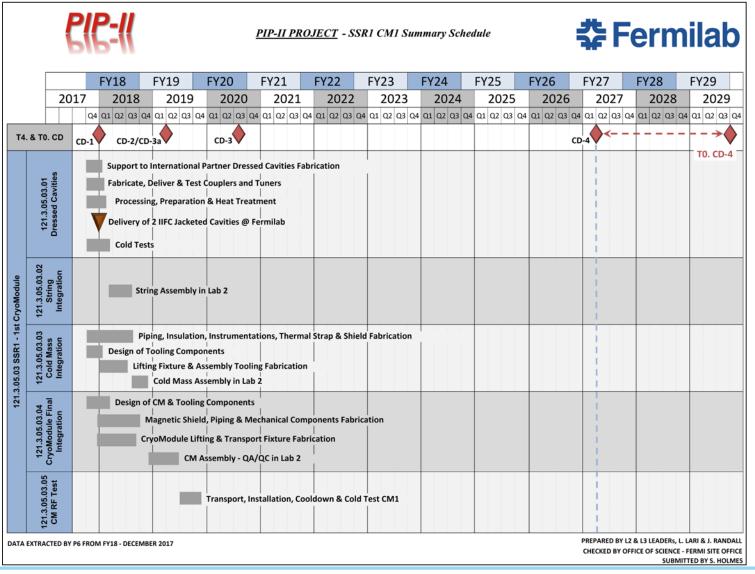
‡ Fermilab

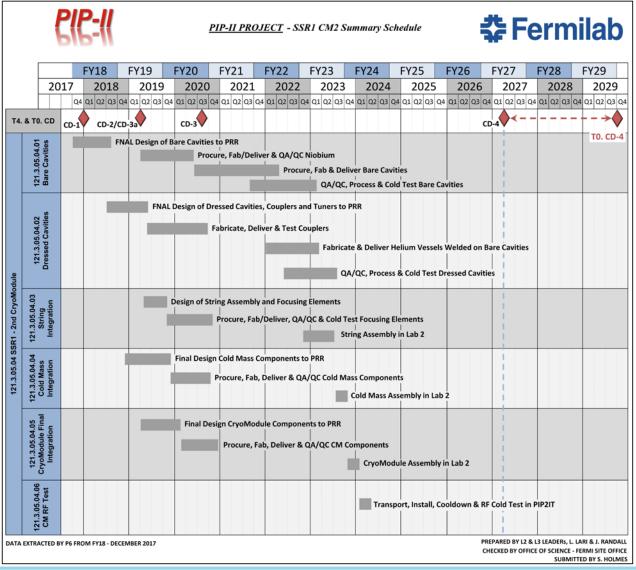

P6 Base Costs = BOE + Overheads + Escalation

121.3.5 SSR1: Labor Profile – P6 Hours/FTE

Charge #3

‡ Fermilab




Charge #3

121.3.5.4 SSR1 CM1 Schedule

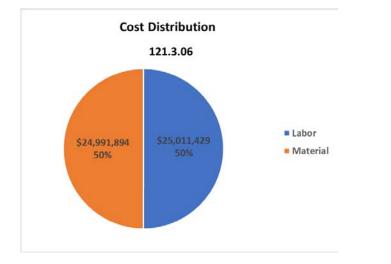
121.3.5.3 SSR1 CM2 Schedule

121.3.6 SSR2: Cost Summary

‡ Fermilab

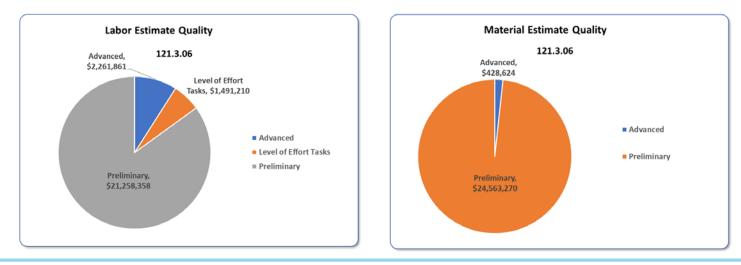
-	Direct Hrs	Direct M&S	Full Burden+Esc	EUC	% EUC	Total Cost
	9,812	\$216,150	\$1,771,554	\$205,192	11.6%	\$1,976,753
	57,674	\$4,583,124	\$15,492,740	\$3,823,896	24.7%	\$19,316,612
M)	90,177	\$12,723,654	\$32,739,029	\$7,784,222	23.8%	\$40,523,194
	157,663	\$17,522,928	\$50,003,323	\$11,813,310	23.6%	\$61,816,559
í) CM)	9,812) 57,674 CM) 90,177	9,812 \$216,150) 57,674 \$4,583,124 CM) 90,177 \$12,723,654	9,812 \$216,150 \$1,771,554) 57,674 \$4,583,124 \$15,492,740 CM) 90,177 \$12,723,654 \$32,739,029	9,812\$216,150\$1,771,554\$205,192)57,674\$4,583,124\$15,492,740\$3,823,896CM)90,177\$12,723,654\$32,739,029\$7,784,222	9,812 \$216,150 \$1,771,554 \$205,192 11.6%) 57,674 \$4,583,124 \$15,492,740 \$3,823,896 24.7% CM) 90,177 \$12,723,654 \$32,739,029 \$7,784,222 23.8%

Full Burden + Esc = BOE + Escalation + Overhead


- P6 generated cost table
- Estimates and activities developed down to the L8 for SSR1 CMs.

🛟 Fermilab

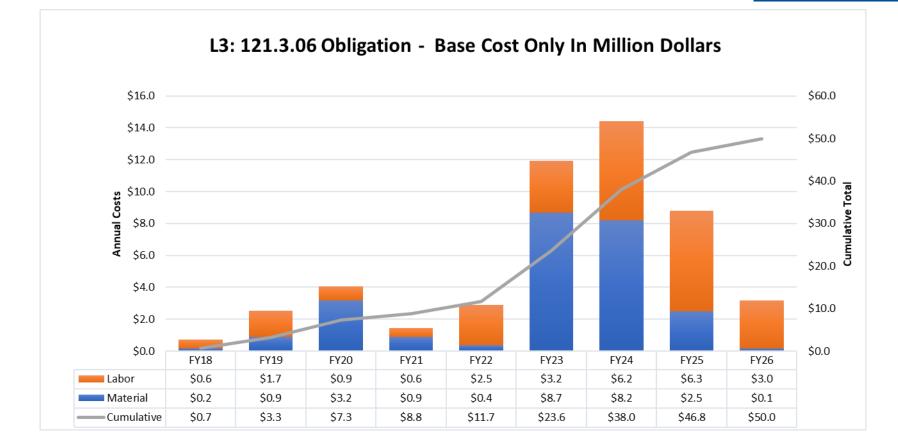
Charge #3


121.3.6 SSR2: Cost Distribution and Estimate Quality

 Estimations for SSR2 CMs are based on experience with SSR1 CM1 (similar work --> preliminary estimations).

Costs = BOE + Overheads + Escalation

Estimate Quality Categories are per FermilabStandards and descriptions can be found in Docdb item number 345



121.3.6 SSR2: Obligation Profile – P6 Base Cost Only

Charge #3

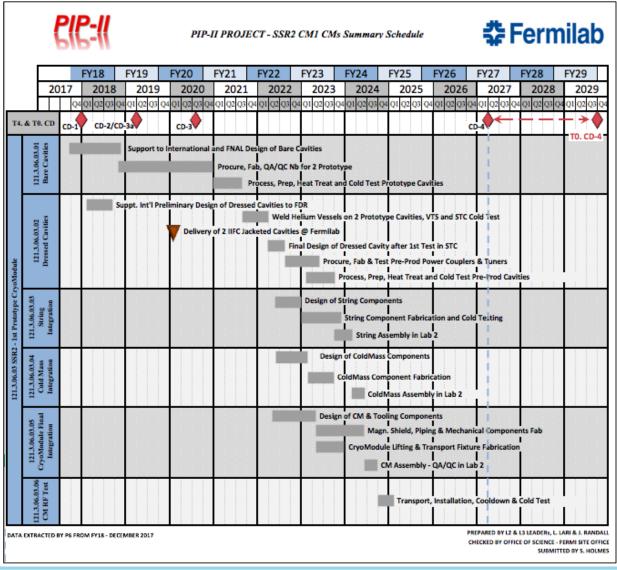
‡ Fermilab

P6 Base Costs = BOE + Overheads + Escalation

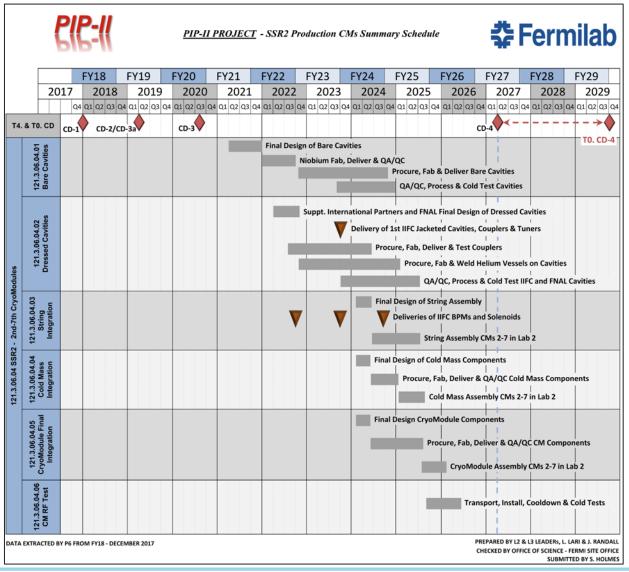
The costs build up moving from prototyping to production

121.3.6 SSR2: Labor Profile – P6 Hours/FTE Charge #3

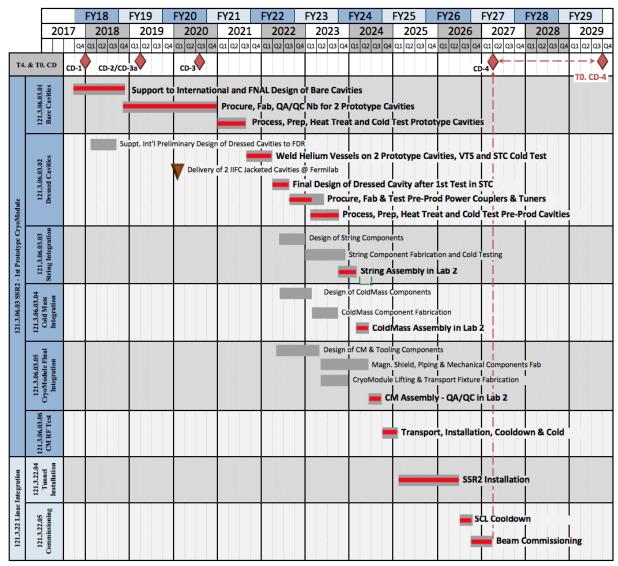
PIP-II L3: 121.3.06 Labor Profile 25 20 **Annual FTE** 10 5 0 FY18 FY21 FY22 FY26 FY19 FY20 FY23 FY24 FY25 Administration Engineer Information Technology Scientific Technical


The labor build up moving from prototyping to production

‡ Fermilab


🛟 Fermilab

121.3.6.3 SSR2 CM1 Schedule



121.3.6.4 SSR2 CM 2-7 Schedule

121.3.6 SSR2 CM1 is on the critical path

辈 Fermilab

Summary

- SSR1 and SSR2 requirements are defined and traceable in Teamcenter.
- Cryomodule sub-system and integrated system designs are sufficiently advanced to proceed to CD-1
 - The status of SSR1 1st CM is advanced.
 - The design and development of SSR CMs and components will be based on the experience and lessons learned with SSR1 1st CM.
- Cost, schedule, and risks are understood.
- ESH&Q plans are established and hazards understood.
- FNAL team and DAE partners are motivated, qualified, and ready to deliver.
- We are ready for CD-1 and look forward to your feedback.
- Thank you for your attention.

