Fermilab **ENERGY** Office of Science

WBS 121.5 – Conventional Facilities

Design and Scope

Steve Dixon

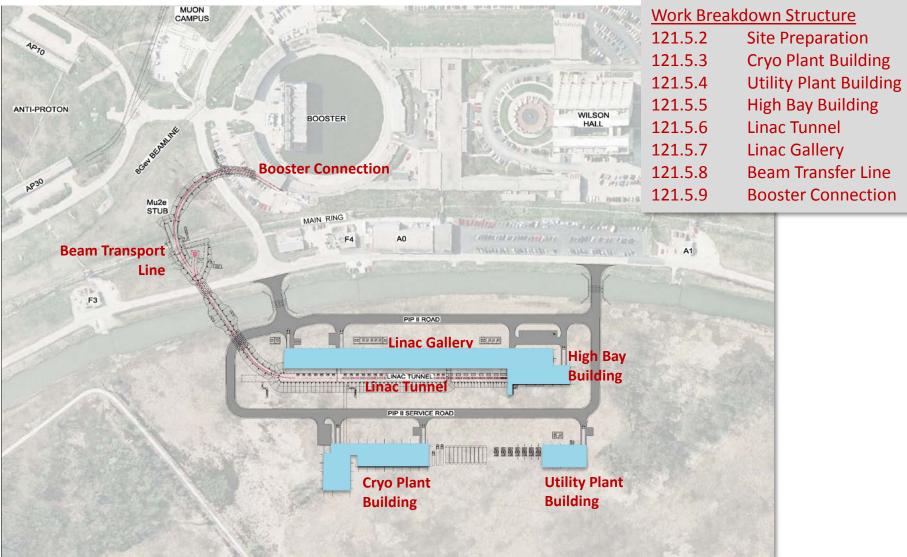
PIP-II DOE Independent Project Review

12-14 December 2017

In partnership with: India/DAE Italy/INFN UK/STFC France/CEA/Irfu, CNRS/IN2P3

Charge Questions

C	narge Question	Presentation
1	Has the project team documented a carefully considered analysis of alternates that supports the preferred alternate?	Plenary and Design and Scope Breakout
2	. Does the conceptual design satisfy the perfromance requirements?	Design and Scope Breakout
3	Does the conceptual design report and supporting documentaton adequately justify the stated cost range and project duration?	Cost and Schedule Breakout
4	Does the project team have adequate management experience, design skills, and laboratory support to manage all aspects of this project and produce a credible technical, cost, and schedule baseline?	Management Breakout
5	Are the ES&H aspects of the project being properly addressed and is the ES&H planning currently sufficient for this stage of the project?	Plenary
6	Is the documentation required by DOE O413.b for CD-1 approval complete and in good order?	CD-1 Documentation Breakout
7	Is the allocation of the technical scope that will be contributed by international partners sufficiently understood and documented such that the conceptual design and cost range can be relied on?	Plenary
8	Has the project satisfactorily responded to the recommendations from previous reviews?	Plenary


Agenda

- Conceptual Design Process
- Alternates Investigated
 - Siting
 - ICW Cooling
 - Pulsed Mode vs. Continuous Wave Operation
- Next Steps

‡ Fermilab

Conventional Facilities Overview

🛑 🛟 Fermilab

Conventional Facilities Overview

View from Wilson Hall

Process

- Functional Requirements Specification (Project Level)
- Functional Requirements Specification (Subproject Level)
- Conceptual Design
 - Drawings [1]
 - Text [2]
 - Estimate Assumptions [3]
- Technical Requirements Specifications
- **Cost/Schedule Estimate** (Separate Breakout Presentation)
 - [1] Conceptual Design Drawings can be found in PIP-II-doc-1155
 - [2] Conceptual Design Report can be found at PIP-II-doc-113
 - [3] Estimate Assumptions can be found at PIP-II-doc-333, Item D

🛟 Fermilab

PIP-II Functional Requirements Specifications

- "PIP-II is focused on upgrades to the Fermilab accelerator complex capable of providing proton beam power in excess of 1 MW on target at the initiation of the Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) program, currently anticipated for the mid-2020s"
- TeamCenter document ED0001222, signed in March 2017 (PIP-II-doc-1166)

Requirement	Description	Value	- N	
11	The siting of the PIP-II facility will be con existing 8-GeV Booster with either an 8 C superconducting pulsed linac	Conventional Fac	ilitie	
12	The siting of the PIP-II facility will be con kW beams to the Mu2e hall on the Muon	specific requirem	ents	
13	The SC Linac will be constructed of comp following modest upgrades			
I 4	The SC Linac will be constructed in a ma commissioning without interruption to on			
15	Residual Activation from Uncontrolled Beam Loss in areas requiring hands-on maintenance.	<20 mrem/hour (average) <100 mrem/hour (peak) @ 1 ft		
16	Scheduled Maintenance Weeks/Year	8		
I 7	SC Linac Operational Reliability	90%		
I8	60-120 GeV Operational Reliability	85%		
19	Facility Lifetime	≥40 years		

Conventional Facilities FRS and TRS

- Functional Requirements Specification (FRS) define the function of each component (what);
- Technical Requirements Specification (TRS) define the critical technical requirements for each components (how);
- Support the PIP-II Project FRS;
- Developed for each conventional facilities work package;
- Ensures design meets the requirements;

		Functional Requirements Specification	Technical Requirements Specification
WBS	Identification	TeamCenter	TeamCenter
121.5.1	CF Project Management and Coordination		
121.5.2	Site Preparation	ED0006787	ED0006789
121.5.3	Cryo Plant Building	ED0006718	ED0006719
121.5.4	Utility Plant Building	ED0006748	ED0006749
121.5.5	High Bay Building	ED0006756	ED0006757
121.5.6	Linac Tunnel	ED0006790	ED0006791
121.5.7	Linac Gallery	ED0007079	ED0006793
121.5.8	Beam Transfer Line	ED0006785	ED0006786
121.5.9	Booster Connection	ED0006794	ED0006795

Typical FRS

Section 1 – Conventional Facilities Purpose

The PIP-II conventional facilities will house the accelerator components and support equipment required to install and operate the PIP-II lina and transfer line. The PIP-II conventional facilities scope includes the elements of work normally included in conventional construction such as earthwork, utilities, structural concrete, structural steel, architectural cladding, finishes, roofing, plumbing, process piping, heating ventilation and air conditioning (HVAC), fire protection, fire detection, lighting and electrical. This also includes the work required to extend the utilities to the project site, excavation associated with the below grade cast-in-place concrete enclosures, creation of a shielding berm and site restoration.

Section 2 - Key Assumptions

Assumptions related to the Cryogenics Plant Building are contained in the Assumptions Document (TeamCenter ED0001222)

Section 3 – Functional Requirements

The function of the Cryogenics Plant Building is to house the processes required to install, assemble and operate the cryogenic plant and related spaces to support PIP-II accelerator operations. The function of the Cryogenics Plant Building is to house the processes required to install, assemble and operate the cryogenic plant and related spaces to support PIP-II accelerator operations.

Typical TRS Contents

Technical Requirements Specifications Cryo Plant Building WBS 121.5.3

Table of Contents

- 1. Conventional Facilities Purpose
- 2. Scope
- 3. Requirements
 - 1. Spatial Requirements
 - 2. Architectural Requirements
 - 3. Structural Requirements
 - 4. Mechanical Requirements
 - 5. Electrical Requirements
 - 6. Fire Protection Requirements
 - 7. Special Requirements
- 4. Code Requirements
 - 1. Organizational Processes
 - 2. Enterprise Standards

Typical Technical Requirements Specification Table of Contents

🛟 Fermilab

Typical TRS

Section 1 – Conventional Facilities Purpose

The PIP-II conventional facilities will house the accelerator components and support equipment require to install and operate the PIP-II lina and transfer line. The PIP-II conventional facilities scope includes the elements of work normally included in conventional construction such as earthwork, utilities, structural concrete, structural steel, architectural cladding, finishes, roofing, plumbing, process piping, heating ventilation and air conditioning (HVAC), fire protection, fire detection, lighting and electrical. This also includes the work required to extend the utilities to the project site, excavation associated wit the below grade cast-in-place concrete enclosures, creation of a shifelding berm and site restoration.

Section 2 - Scope

The Cryogenics Plant Building consists of the conventional construction required to install, house and operate the cryogenic plant to support PIP-II accelerator operations. The cryogenics equipment, installation, assembly, testing and commissioning will be accomplished by others.

Section 3 - Requirements

3.1 – Spatial Requirements

The Cryogenics Plant Building will be located at the downstream end of the Linac Enclosure in order to be positioned to allow for future expansion.

The Cryogenics Plant Building contains three (3) primary spaces as described below:

<u>Cold Box Station</u> - The Cold Box Station will contain the equipment to install, operate and maintain the cold box. This includes the following requirements:

- Building Size: 15 m x 40 m (50 feet x 131 feet);
- Overhead door 5 m x 5 m (17 feet x 17 feet);
- Space for five (5) 10,000 liter (2,641 gallons) dewars;
- Coordination Center to house 4-8 people;
- Control Room to accommodate equipment, monitors and related control equipment;
- Control Room and Coordination Center should have an isolated HVAC system that is capable pressuring the room to reduce the oxygen deficiency hazard of the space;

<u>Warm Compressor Station</u> - The Warm Compressor Station will contain the equipment to install, operate and maintain the compressors and related equipment to support the Cold Box Station. This includes the following requirements:

- Building Size: 20 m x 30 m (66 feet x 100 feet)
- Overhead door 5 m x 5 m (17 feet x 17 feet);
- Space for five (5) 10,000 liter (2,641 gallons) dewars;

<u>Exterior Space</u> - The exterior space for the Cryogenics Plant Building will provide for access to the Cold Box Station and Warm Compressor Station. This includes the following requirements:

• Space for ten (10) 113,000 liter (30,000 gallon) storage tanks and related piping;

The Cryogenics Plant Building contains three (3) primary spaces as described below:

<u>Cold Box Station</u> - The Cold Box Station will contain the equipment to install, operate and maintain the cold box. This includes the following requirements:

- Building Size: 15 m x 40 m (50 feet x 131 feet);
- Overhead door 5 m x 5 m (17 feet x 17 feet);
- Space for five (5) 10,000 liter (2,641 gallons) dewars;
- Coordination Center to house 4-8 people;
- Control Room to accommodate equipment, monitors and related control equipment;
- Control Room and Coordination Center should have an isolated HVAC system that is capable of pressuring the room to reduce the oxygen deficiency hazard of the space;

<u>Warm Compressor Station</u> - The Warm Compressor Station will contain the equipment to install, operate and maintain the compressors and related equipment to support the Cold Box Station. This includes the following requirements:

- Building Size: 20 m x 30 m (66 feet x 100 feet)
- Overhead door 5 m x 5 m (17 feet x 17 feet);
- Space for five (5) 10,000 liter (2,641 gallons) dewars;

Typical Technical Requirements Specification page

Conceptual Design Process

- Meetings with Stakeholders:
 - Goal: Document the spatial and infrastructure requirements for PIP-II facilities; [4]
 - Started in January 2016;
- Results:
 - Conceptual Design drawings and text that described the sizes/arrangement of spaces and buildings to accommodate the functional requirements; [5]
 - Cost Estimate Assumptions; [6]
 - Life Safety Analysis; [7]
 - Cooling strategies for pulsed mode and continuous wave operation;
 - Conventional facilities are similar to typical Fermilab construction;
 - [4] Meeting Minutes can be found in PIP-II-doc-70
 - [5] Conceptual Design Drawings can be found in PIP-II-doc-1155
 - [6] Assumptions can be found at PIP-II-doc-333
 - [7] Final LSA can be found at PIP-II-doc-120

Conceptual Design Process

Stakeholders:

Fermilab:

Alessandro Vivoli, Anindya Chakravarty, Anthony F Leveling, Arkadiy L Klebaner Beau F. Harrison, Curtis M. Baffes, David E Johnson, David W Peterson Don Cossairt, Donald V Mitchell, Emil Huedem, Jim Niehoff, Fernanda G Garcia Jerry R Leibfritz, Jerzy Czajkowski, John E Anderson Jr, Luisella Lari Matthew Quinn, Maurice Ball, Paul Derwent, Ralph J Pasquinelli Todd M Sullivan, Valeri A Lebedev, William A Pellico

Consultants:

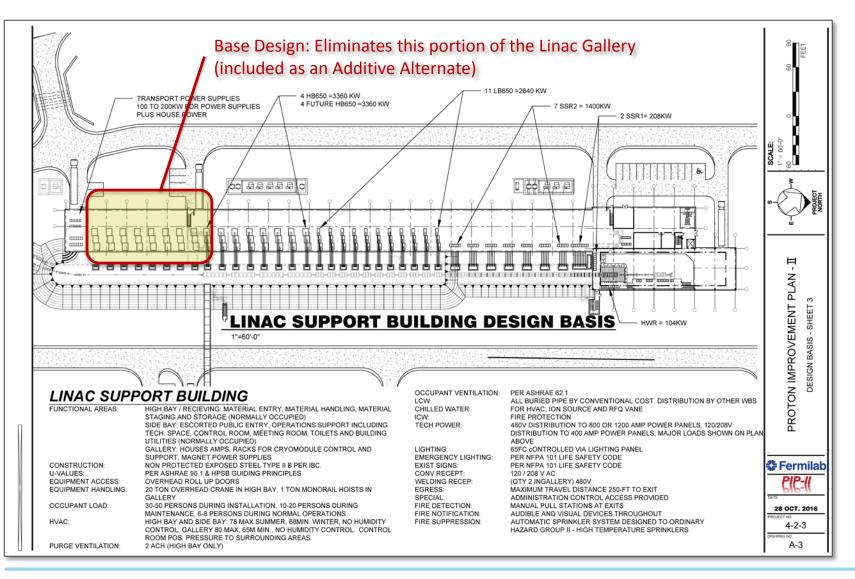
Tom Lackowski, TGRWA Ron Jedziniak, LG Associates Rick Glenn, Jensen Hughes

Meeting Minutes (PIP-II-doc-70)

- 01 Coordination Meeting 17FEB16 (pdf)
- <u>02 Cryogenic Department Meeting 19FEB16 (pdf)</u> Cryo Meeting
- <u>03 Coordination Meeting 02MAR16 (pdf)</u> Linac Enclosure
- <u>04 Coordination Meeting 09MAR16 R1 (pdf)</u> Linac Enclosure and Cooling
- <u>05 Coordination Meeting 24MAR16 R1 (pdf)</u> Linac Enclosure and Cryo Plant
- 06 Cryo Coordination Meeting 01APR16 (pdf) ICW Cooling and Cryo
- <u>07 Coordination Meeting 14APR16 (pdf)</u> Penetrations and Cooling Strategy
- <u>08 Coordination Meeting 28APR16 (pdf)</u> Cooling Strategy
- <u>09 Coordination Meeting r1 12MAY16 (pdf)</u> Shielding and Transport Line
- <u>10 Coordination Meeting 09JUN16 (pdf)</u> Shielding Summary
- <u>11 Coordination Meeting 07JUL16 (pdf)</u> RF Distribution and LCW Cooling
- <u>12 Coordination Meeting 21JUL16 (pdf)</u> High Bay Equipment
- <u>13 Coordination Meeting 04AUG16 (pdf)</u> Cryo Summary and Linac Gallery
- <u>14 Coordination Meeting 15SEP16 (pdf)</u> Sitewide Electrical Distribution

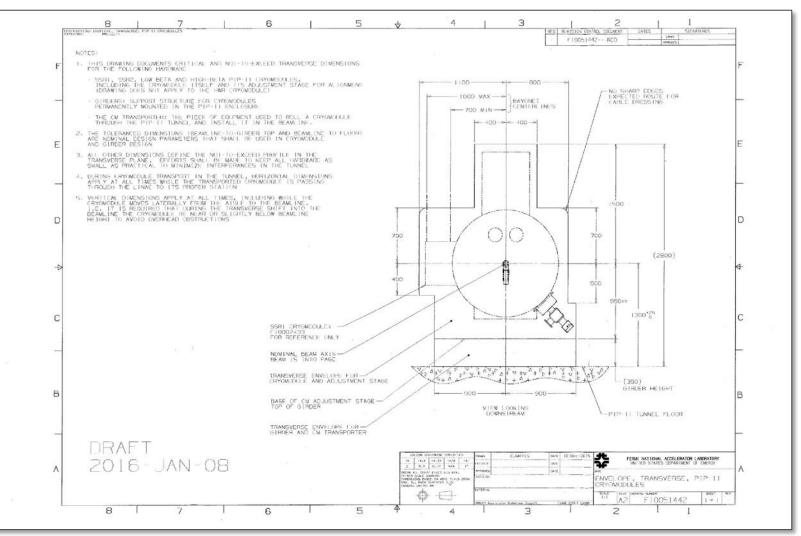
‡ Fermilab

Drawings (PIP-II-doc-1155)

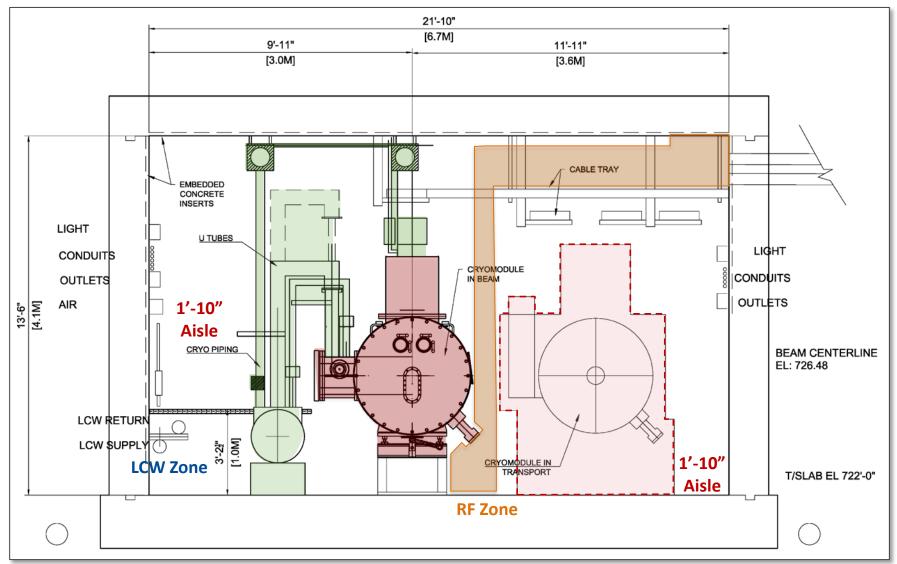

55 Drawings

- One (1) General sheet
- Seven (7) Civil sheets
- Forty-Three (43) Architectural sheets
- Three (3) Mechanical sheets
- One (1) Electrical sheet

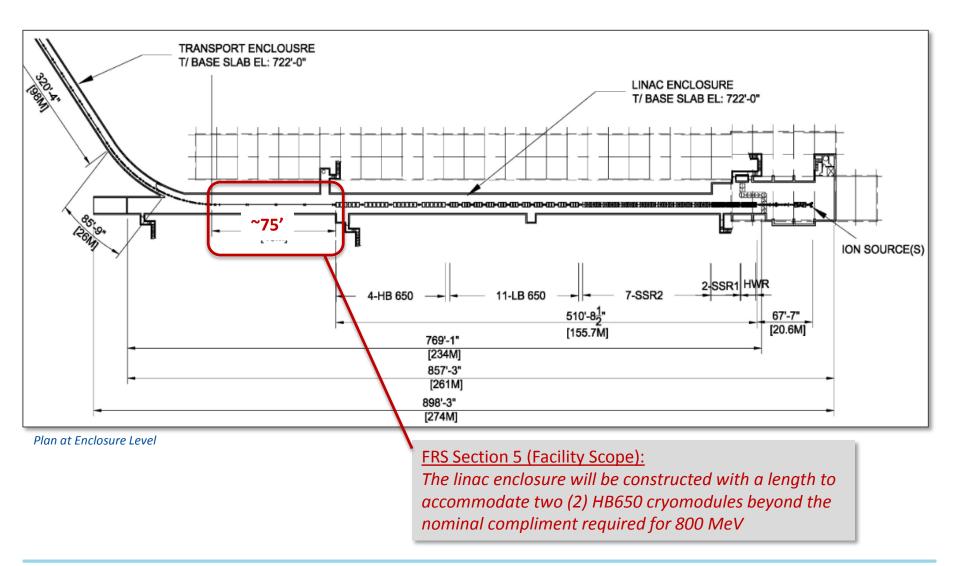
IICT	OF DRAWINGS	A-9	LINAC ENCLOSURE PLAN - SHEET 4	A-29	CROSS SECTION THRU HIGH BAY
LISI	OF DRAWINGS	A-10	TRANSPORT ENCLOSURE PLAN - SHEET 1	A-30	CROSS SECTION @ HWR
		A-11	TRANSPORT ENCLOSURE PLAN - SHEET 2	A-31	SECTION THRU HIGH BAY
G-1	TITLE SHEET, LIST OF DRAWINGS	A-12	TRANSPORT ENCLOSURE PLAN - SHEET 3	A-32	SECTION @ COAX FOR SSR1, SSR2
		A-13	TRANSPORT ENCLOSURE PLAN - SHEET 4	A-33	SECTION @ WAVEGUIDE FOR LB 650, HB 650
C-1	SITE IMAGE	A-14	TRANSPORT ENCLOSURE PLAN - SHEET 5	A-34	SECTION AT LINAC ALCOVES
C-2	FUTURE BEAMLINES SITE PLAN	A-15	TYP. LINAC ENCLOSURE SECTION	A-35	SECTION SHEET - 1
C-3	WETLANDS SITE PLAN	A-16	TYP. TRANSPORT ENCLOSURE SECTION	A-36	SECTION SHEET - 2
C-4	SITE PLAN	A-17	ELEVATION AT MAIN RING CROSSING	A-37	SECTION SHEET - 3
C-5	ENLARGED PLAN AT ABSORBER	A-18	PIP II CAMPUS PLAN	A-38	SECTION SHEET - 4
C-6	SITE UTILITY PLAN	A-19	LINAC SUPPORT BUILDING KEY PLAN	A-39	SECTION SHEET - 5
		A-20	LINAC SUPPORT BUILDING PLAN - SHEET 1	A-40	CRYOGENIC PLANT
A-1	DESIGN BASIS - SHEET 1	A-21	LINAC SUPPORT BUILDING PLAN - SHEET 2	A-41	COLD BOX STATION PLAN
A-2	DESIGN BASIS - SHEET 2	A-22	LINAC SUPPORT BUILDING PLAN - SHEET 3	A-42	COMPRESSOR STATION PLAN
A-3	DESIGN BASIS - SHEET 3	A-23	LINAC SUPPORT BUILDING PLAN - SHEET 4	A-43	PIP II UTILITY PLANT PLAN
A-4	LIFE SAFETY	A-24	LINAC SUPPORT BUILDING PLAN - SHEET 5		
A-5	ENCLOSURE KEY PLAN	A-25	SOUTHEAST BOOSTER BUILDING - DEMO PLAN	M-1	CONCEPTUAL DESIGN BASIS - SHEET 1
A-6	LINAC ENCLOSURE PLAN - SHEET 1	A-26	SOUTHEAST BOOSTER BLDG EXCAVATION PLAN	M-2	CONCEPTUAL DESIGN BASIS - SHEET 2
A-7	LINAC ENCLOSURE PLAN - SHEET 2	A-27	SOUTHEAST BOOSTER BUILDING - PLAN	M-3	COOLING HEAT REJECTION CONCEPT
A-8	LINAC ENCLOSURE PLAN - SHEET 3	A-28	SECTION THRU RECEIVING		
				E-1	POWER SINGLE LINE DIAGRAM



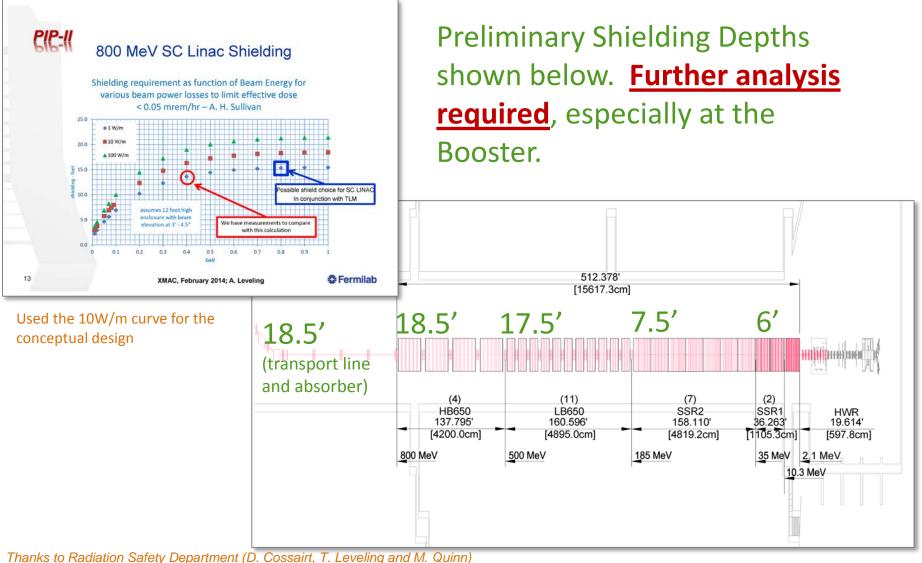
Typical Design Basis Sheet

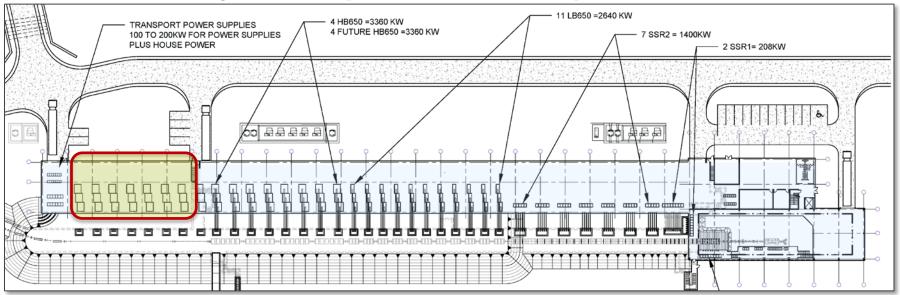

Typical Linac Tunnel Cross Section

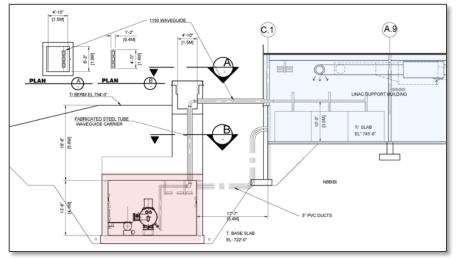
Cryomodule criteria envelope (TeamCenter F10051442)



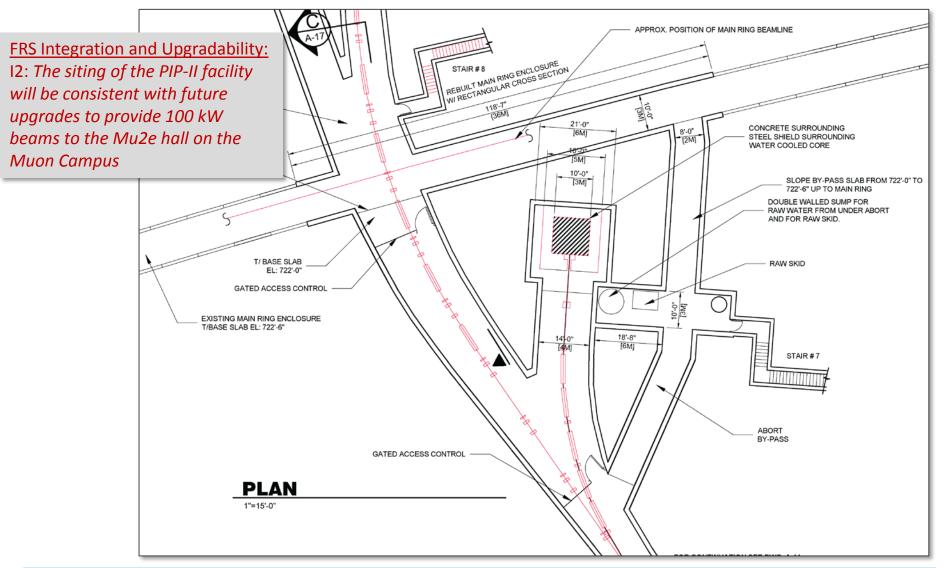
Typical Linac Tunnel Cross Section


Linac Tunnel Plan (WBS 121.5.6)

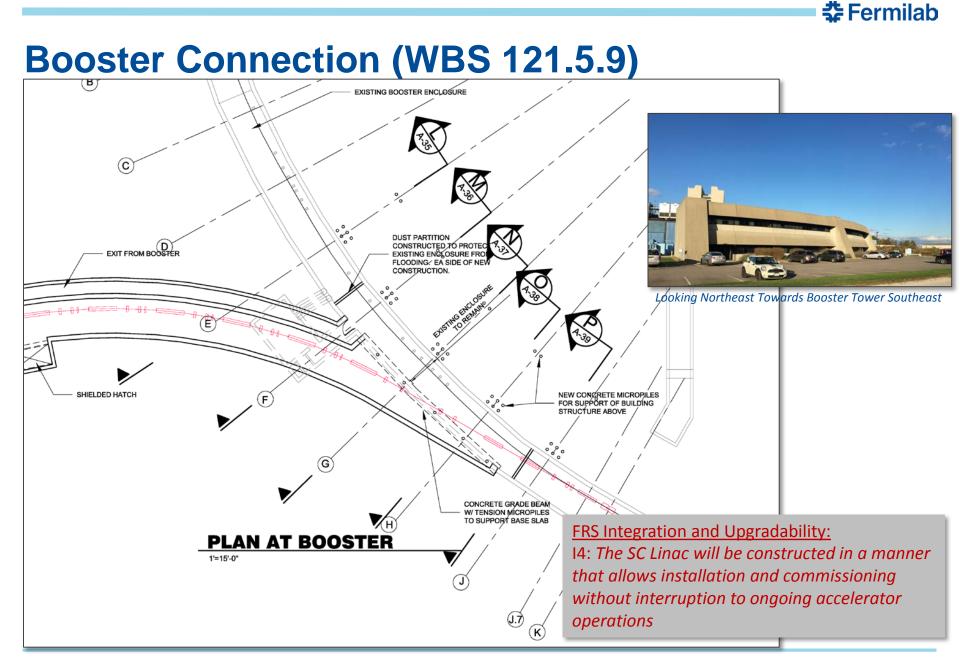

🛟 Fermilab


Preliminary Shielding Considerations

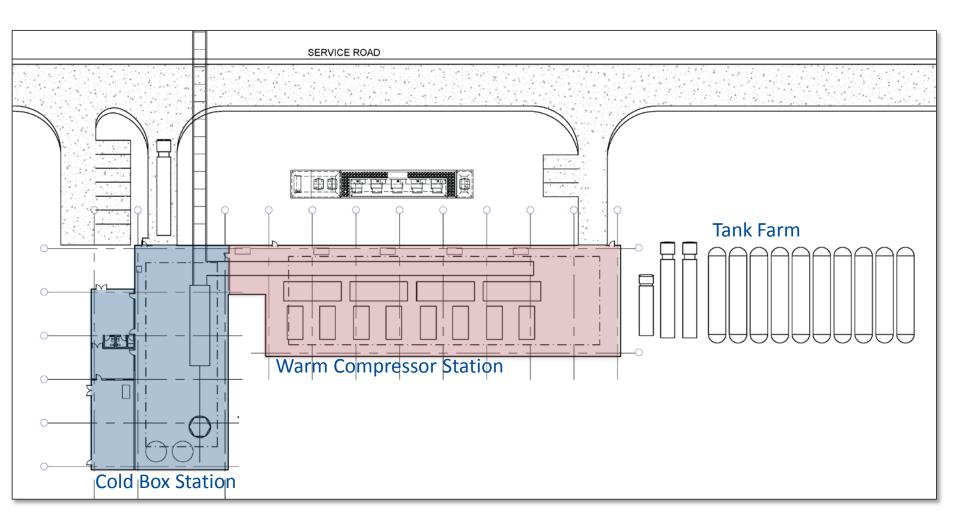
Linac Gallery Plan (WBS 121.5.7)



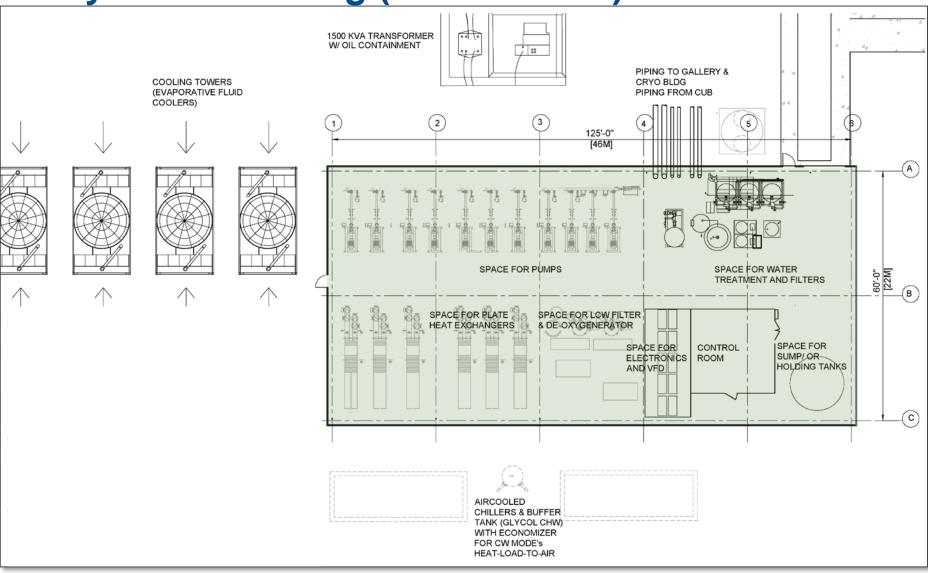
Cross Section Looking South at Coax Penetrations

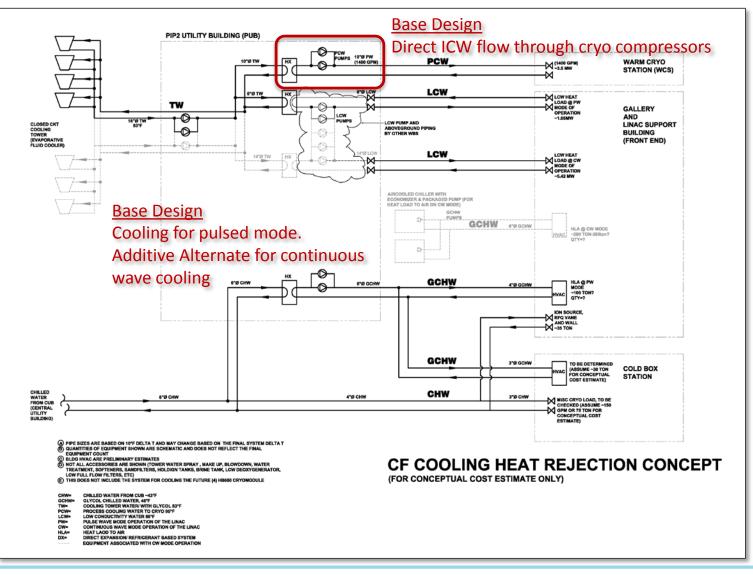

Cross Section Looking South at Waveguide Penetrations

Beam Transfer Line (WBS 121.5.8)

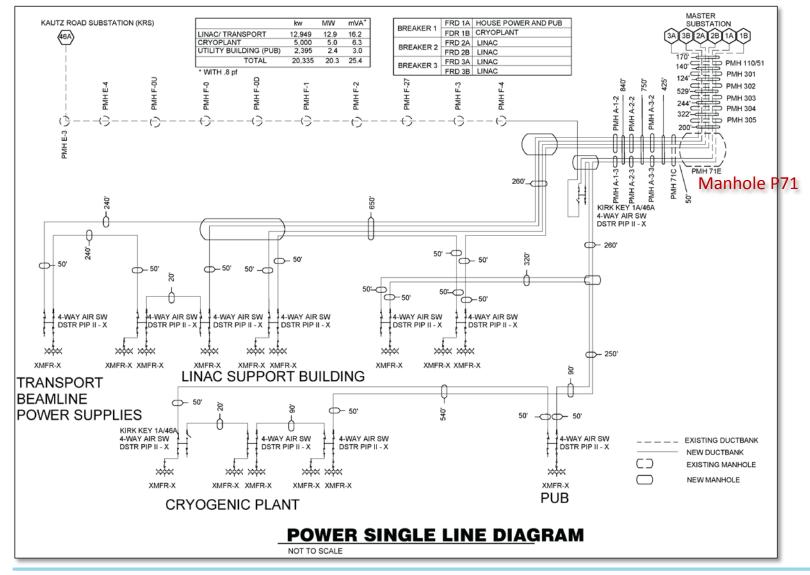


23 12/12/17 S. Dixon | Conventional Facilities | Design and Scope


Cryo Plant Building (WBS 121.5.3)

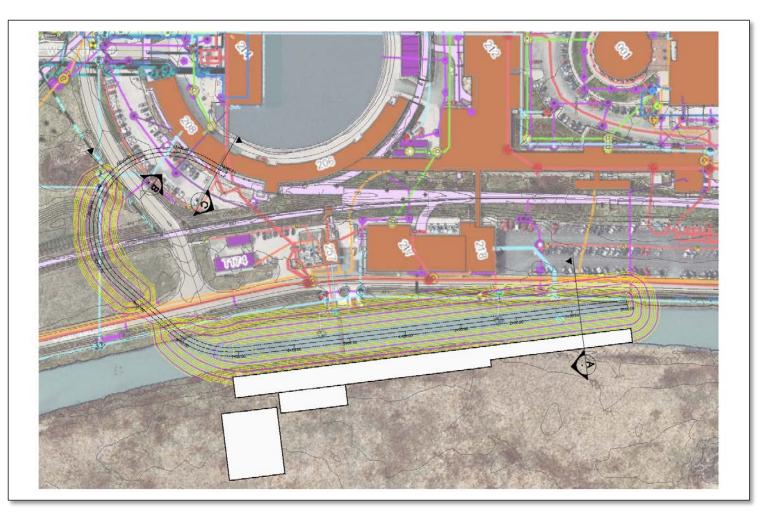

‡ Fermilab

Utility Plant Building (WBS 121.5.4)



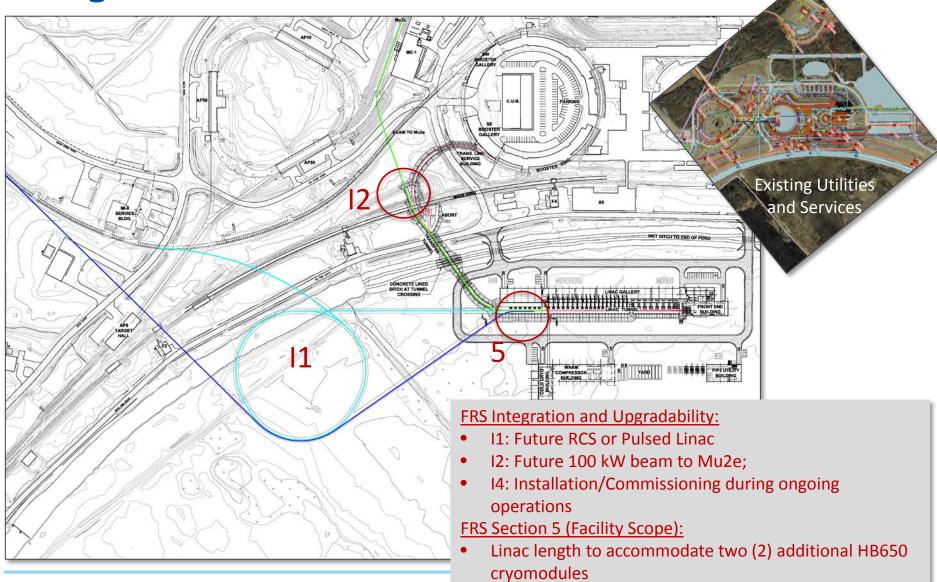
Cooling Concept

Electrical Distribution Concept

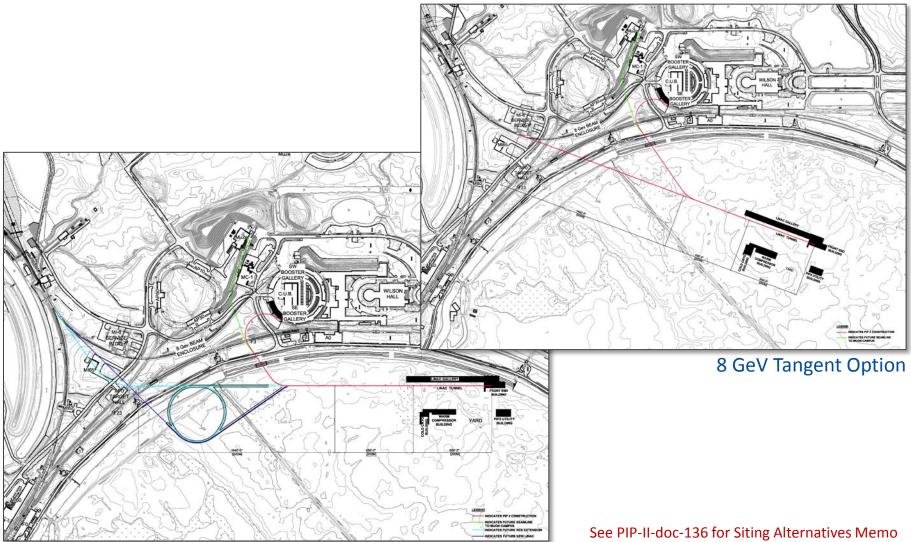

Alternates Considered

- Siting
- ICW Cooling
- Pulsed Mode vs. Continuous Wave Operation

Preconceptual Location

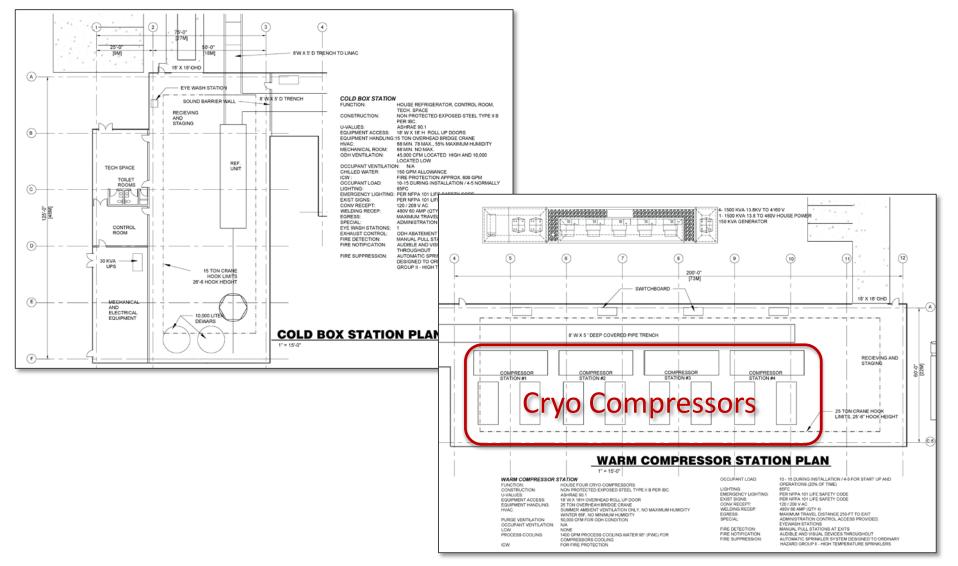


2014 Location


‡ Fermilab

Siting Considerations

December 2016 Siting Alternatives Study


Northward Shift Option

‡ Fermilab

🛟 Fermilab

Cryo Plant Cooling Water

Cryo Plant – Water Quality Requirements

		PIP-II Requirements			Water Analy	/sis Report	Existing Data	
Desription	Unit	Closed loop	Open loop	1	Range	Units	1	
pH value		7.5 - 9.0	7.5 - 9.0	1	7.82 - 7.89		1	
Hardness	[dH]	< 20	< 20	1	20.79 - 23.02	ppm CaCO3	1 dH = 17.848 mg CaCO3	
Carbonate hardness	[dH]	< 20	< 4	1	0.96 - 1.02	Ca/Mg ratio	1	
Chloride (Cl)	[mg/l]	< 100	< 100		5-15	ppm		
Dissolved iron (Fe)	[mg/l]	< 0.2	< 0.2		0.04 - 0.01	ppm	1 ppm = 1 milligram/liter	
Sulphate (SO4)	[mg/l]	< 200	< 200		84.51 - 115.51	ppm		
Sulfide (S2-)	[mg/l]	< 0.1	< 0.1				Future water analysis	
Silicic acid (SiO ₂)	[mg/l]	< 200	< 200		10.63 - 11.56	ppm		
HCO3/SO4	-	> 1	> 1				Future water analysis	
Electrical conductivity	[µS/cm]	10 - 800	10 - 1500				Future water analysis	
Ammonium (NH4)	[mg/l]	< 1	< 1				Future water analysis	
Dissolved manganese (Mn)	[mg/l]	< 0.2	< 0.1		0.00	ppm		
Phosphate (PO4)	[mg/l]	< 15	< 15				Future water analysis	
Glycol	[%]	20 - 40	-				Euture water analysis	
Solids (particle size)	[mm]	< 0.1	< 0.1	11	?	?	Requires Further Investigatio	
Solids (particle amount)	[mg/l]	< 10	< 10		?	?	Requires Further Investigatio	
Appearance		clear, colorless	clear, colorless					
Total bacterial count	[CFU/ml]	< 10 ⁴	< 10 ⁴		?	?	Requires Further Investigation	
Proportion of non-dissolved solids	[ppm]	< 20	< 20		?	?	Requires Further Investigation	
Algae		- not allowed	 not allowed 		?	?	Requires Further Investigation	
Magnesium					189.46 - 204.43	ppm CaCO3		
Calcium					181.52 - 206.42	ppm CaCO3		
Copper					0.00 - 0.01	ppm		
Total Phosphorus					0.06 - 0.13	ppm		
Zinc					0.0 - 0.01	ppm]	
Sodium					23.84 - 34.98	ppm		
Molybdate					0.01 - 0.3	ppm		
Boron					0.55 - 0.65	ppm]	
Aluminum					0.02 - 0.03	ppm		

‡ Fermilab

Cryo Plant Cooling – Initial Analysis

- Water Requirements
 - ~2,000 gpm flow (ideal)
- Pond System
 - Chemical characteristics met by pond water system;
 - Solids content characteristics <u>NOT</u> met by pond water system;
 - <u>No Pond Exists</u> ~\$500-\$700k per acre;
- Industrial Cooling Water (ICW) System
 - Testing indicates that ICW meets most requirements [4];
 - Chemical characteristics met by existing ICW system;
 - Solids content characteristics NOT met by ICW system;
 - Only **1,400** gpm available per the ICW computer model;
 - Verified with Cryo that <u>1,400 gpm at 17 degree F delta T</u> is acceptable

[4] – ICW Water Quality Test Results study can be found at PIP-II-doc-155

Cryo Plant Cooling – Additional Analysis

BZero Compressor Building

35

Summer/Fall 2016

- Test Station, installed as part of the Mu2e Cryo work for CDF;
- Installed test ports to sample the ICW before and after the strainer;
- Three Options:
 - Adams strainer with 250 micron slot sizes (baseline);
 - Two month rental of a Lakos strainer to reduce the solids with 25 micron filter;
 - Replacement filter elements in Adams strainer with 75 micron slot size;
- Arranged for FESS/O water testing service to increase the testing to include solids;
- Compared strainer options with water quality requirements.

Cryo Plant Cooling - Results

					er (250 micron)	Adams Strain	er (75 micron)	Lakos Filter	(25 micron)	CUB Coolir	ng Towers
				21-00	ct-16	14-D	ec-16	16-No	ov-16		
		PIP-II Requ	uirements	Before	After	Before	After	Before	After	16-Nov-16	14-Dec-17
Desription	Unit	Closed loop	Open loop								
pH value		7.5 - 9.0	7.5 - 9.0	7.51	7.71			8.28	8.23		
Hardness	[dH]	< 20	< 20	12.10	12.03			13.98	14.01		
Carbonate hardness	[dH]	< 20	< 4	1.02	1.01			1.03	1.03		
Chloride (CI)	[mg/l]	< 100	< 100								
Dissolved iron (Fe)	[mg/l]	< 0.2	< 0.2	0.07	0.07			0.10	0.12		
Sulphate (SO ₄)	[mg/l]	< 200	< 200	36.02	34.63			46.16	44.41		
Sulfide (S2-)	[mg/l]	< 0.1	< 0.1								
Silicic acid (SiO ₂)	[mg/l]	< 200	< 200	5.62	5.56			5.52	5.54		
HCO ₃ / SO ₄	-	> 1	> 1								
Electrical conductivity	[µS/cm]	10 - 800	10 - 1500	672.00	672.00			698.00	695.00		
Ammonium (NH4)	[mg/l]	< 1	< 1	0.20	0.20		0.30		0.22		
Dissolved manganese (Mn)	[mg/l]	< 0.2	< 0.1	0.01	0.01			0.01	0.01		
Phosphate (PO ₄)	[mg/l]	< 15	< 15	0.29	0.44			0.07	0.31		
Glycol	[%]	20 - 40	-	0.00	0.00			0.00	0.00		
Solids (particle size)	[mm]	< 0.1	< 0.1		0.04		0.03		0.03		
Solids (particle amount)	[mg/l]	< 10	< 10		see chart		see chart		see chart		
Appearance		clear, colorless	clear, colorless								
Total bacterial count	[CFU/ml]	< 10 ⁴	< 10 ⁴	1,000	1,000			0	0		
Proportion of non-dissolved solids	[ppm]	< 20	< 20								
Algae	cells/mL	- not allowed	- not allowed	986,751	1,347,557	447	47	23,785	2,144	87	13
Magnesium	ppm			107.12	106.63			122.72	122.87		
Calcium	ppm			108.86	108.13			126.81	127.12		
Copper	ppm			0.00	0.00			0.00	0.00		
Zinc	ppm			0.00	0.01			0.01	0.01		
Sodium	ppm			62.19	61.77			60.21	59.70		
Molybdate	ppm			0.01	0.00			0.00	0.01		
Boron	ppm			107.12	106.63			122.72	122.87		
Aluminum	ppm			0.03	0.03			0.04	0.04		

Results:

- Additional testing (chloride) and discussion with cryo folks;
- Algae is likely seasonal, still requires a solution or better definition of requirements;
- Baseline design will assume direct flow of ICW through cryo compressors;
- Additive Option: heat exchanger to isolate the ICW from the cryo compressor side;

Pulsed Mode vs. Continuous Wave Operation

- Driven by duty factor of the accelerator equipment
 - 15% for Pulsed Mode
 - 100% for Continuous Wave Mode
- Common For Both Modes
 - Physical arrangement of heat producing equipment;
 - Electrical power supply (not usage);
 - Conventional Facilities handles the heat load to air (HLA);
- Difference is Primarily Cooling
 - ~5.4 MW in pulsed mode;
 - ~11.76 MW in continuous wave mode;

🛟 Fermilab

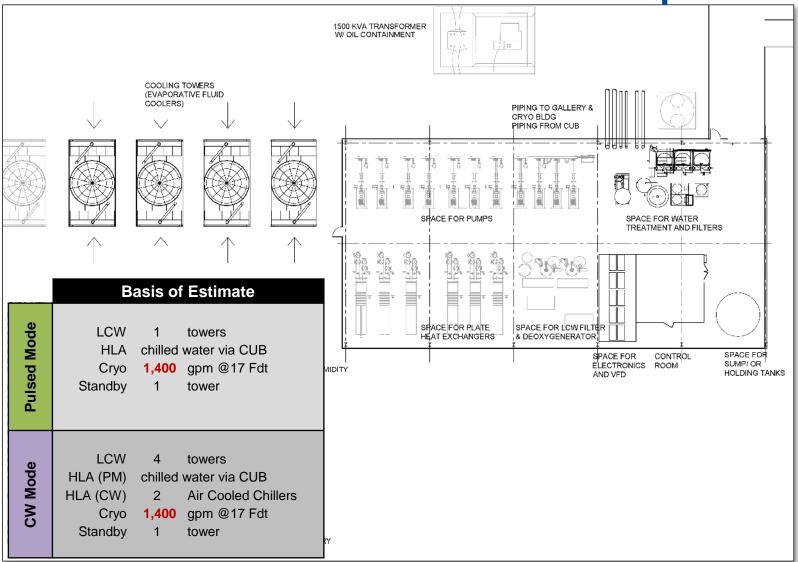
‡ Fermilab

Pulsed Mode vs. Continuous Wave Operation

Heat Loads										
	Pulsed Mode	Continuous Wave Mode								
Low Conductivity Water (LCW)	1.65	7.07								
Heat Load to Air (HLA)	0.33	1.29								
Cryoplant Cooling (Cryo)	3.4	3.4								
Total (MW)	5.38	11.76								

	Industrial Cooling Water (ICW)		Cooling	Ponds (PW)	Towe	rs (close)	Towers (open)		Ba	isis of Estimate
Pulsed Mode	MW to GPM Con LCW HLA Cryo	Stression 682.79 1,125 gpm 227 gpm 1,400 gpm @17 Fdt 2,752 gpm	MW to Acres Conve LCW HLA Cryo	I.98 acres 0.50 acres 4.08 acres 6.56 acres	LCW HLA Cryo	1.0 towers towers 2.0 towers 3.00 towers udes standby	LCW HLA Cryo <i>excl</i> i	1.0 towers towers 1.0 towers 2.00 towers udes standby	LCW HLA Cryo Standby	1 towers chilled water via CUB 1,400 gpm @17 Fdt 1 towers
CW Mode	MW to GPM Con LCW HLA Cryo	version 682.79 4,827 gpm 881 gpm <u>1,400</u> gpm @17 Fdt 7,108 gpm	MW to Acres Conve LCW HLA Cryo	arsion 1.2 8.48 acres 1.94 acres 4.08 acres 14.50 acres	LCW HLA Cryo	4.0 towers 2.0 towers 2.0 towers 8.00 towers udes standby	LCW HLA Cryo <i>excl</i>	2.0 towers 1.0 towers <u>1.0</u> towers 4.00 towers udes standby	LCW HLA (PM) HLA (CW) Cryo Standby	4towerschilled water via CUB2air cooled chillers1,400gpm @17 Fdt1towers
	Other Consideratio Strainers, Drougl		Other Considerations Strainers, Heat Exc Drought Conditions	hangers, Treatment	Other Consideration Heat Exchangers, Building Costs	ns Treatment, Make Up	Other Consideratio Heat Exchangers Building Costs	ns , Treatment, Make Up	Other Consider Heat Exchang Building Cost	gers, Treatment, Make Up
	Note: 1,400 gpm is the highest flow currently available from the existing ICW system									

2,000 gpm is preferred


Pulsed Mode vs. Continuous Wave Operation

- Goal: Modular approach that allows for efficient operation in both modes;
- CUB Chilled Water Budget: ~250 tons total. Used for small equipment loads, building loads <u>and</u> RF heat load to air
- Pulsed Mode
 - Heat Load to Air (HLA): Utilize chilled water from existing CUB for equipment cooling;
 - LCW: (1) Cooling Tower + 1 standby;
 - Cryo: 1,400 gpm of ICW directly through the compressors.
- Continuous Wave Mode
 - Heat Load to Air (HLA): Install a chilled water loop to supplement the pulsed mode system with (2) air cooled chillers;
 - LCW: (3) additional Cooling Towers;
 - Cryo: No change

‡ Fermilab

Pulsed Mode vs. Continuous Wave Operation

Summary

- Completed:
 - Developed a conceptual design based on technical requirements from stakeholders;
 - Investigated alternate siting locations;
 - Investigated alternate means of cooling cryo compressors;
 - Developed a modular approach to cooling during pulsed mode and continuous wave operation;
 - Approved TRS and FRS
- Next Steps:
 - Radiation Safety Assessment;
 - Refine the design during Detailed Design phase;
 - Value Engineering (purchase order in place);
 - Update the cost/schedule estimate;
 - Constructability Review at ~60%;

Questions

