Fermilab **BENERGY** Office of Science

121.3.4 Linac – HWR (Half-Wave Resonator)

SC Acceleration Modules and Cryogenics

Zachary Conway PIP-II DOE Independent Project Review 12-14 December 2017 In partnership with: India/DAE Italy/INFN UK/STFC France/CEA/Irfu, CNRS/IN2P3

Outline

- Argonne National Laboratory Organization
- Half-Wave Resonator (HWR) cryomodule requirements.
- HWR cryomodule design overview.
- Scope/deliverables.
- Interface control document for the HWR cryomodule.
- Fabrication and testing status.
- FNAL ESH&Q and Argonne HSE (Health, Safety and Environment)
- Risk assessment.
- Cost.
- Future schedule.
- Summary.

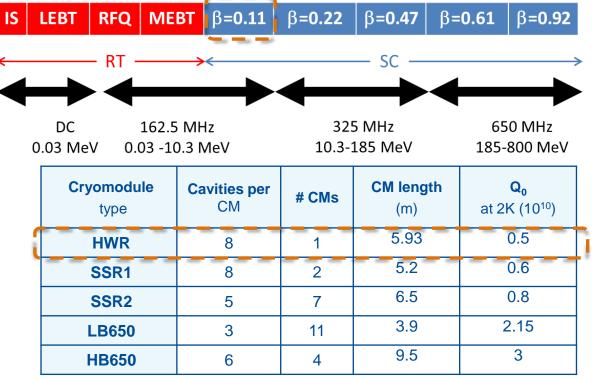
Argonne National Laboratory - Accelerator Development Group:

- Designing, building and commissioning superconducting accelerators since 1977.
 - All retired group members still work 1+ days per week.
- My relevant experience:

3

- Superconducting resonators spanning ion/electron velocities from 0.05c to c.
- All superconducting device ancillary hardware.
- 6 different types of superconducting resonator cryomodules operating at 2.0 or 4.5 K.
- Superconducting accelerator commissioning.

🚰 Fermilab

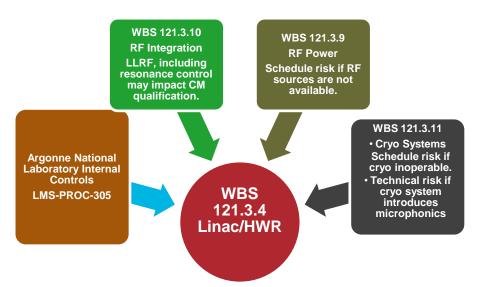


Project Organization

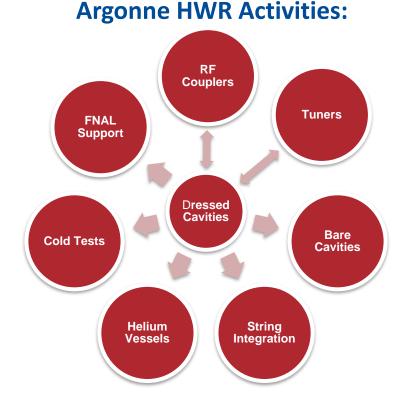
- Cryomodule and subcomponents designed by FNAL and ANL.
- ANL is fabricating and assembling the half-wave resonator (HWR) cryomodule.
- At ANL:
 - Group Leader = Mike Kelly.
 - Technical Lead = Zack Conway.
- FNAL:
 - Project Liaison: Andrei Lunin (attends weekly status meetings at ANL and provides interface between FNAL/ANL).
 - Project Engineer: Allan Rowe (L3 & CAM)

WBS 121.3.4 Linac – HWR System Req.Charge #2TC# ED0001313 Tech. Spec. for HWR Cryomodule

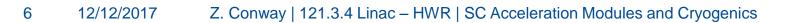
- The half-wave resonator (HWR) cryomodule contains 8 β = 0.11 HWRs and 8 solenoids (6 T) with integrated x-y dipole steering coils.
- The HWR cryomodule will operate continuous wave with a beam current of 2 – 5 mA to accelerate the beam from 2.1 – 10.3 MeV.


🛟 Fermilab

‡ Fermilab


121.3.4 Interfaces – Technical/Schedule

Charge #2


Top 4 system interfaces with 121.3.4:

HWR CM WBSs interface with nearly all systems and support WBSs. The HWR CM has a detailed interface specification which was used to design and build the module.

ANL is providing a fully assembled cryomodule. Dressed cavity interfaces with all critical components in the cryomodule.

Interfaces - Technical/Schedule

WBS 121.3.4 interface across the PIP-II WBS Matrix

• The HWR Cryomodule has a controlled document fully elaborating each interface, TC# ED0001313: Technical Specification for the Interfaces, signed 9 April 2014.

Interfaces for the HWR Cryomodule										
121.3.4 – HWR Cryomodule	121.3.18 – Vacuum									
121.3.9 – RF Power	121.3.19 – General Supt. Serv.									
121.3.10 – RF Integration	121.3.20 – Safety Systems									
121.3.11 – Cryo Systems	121.3.21 – Test Infrastructure									
121.3.16 – Beam Instrum.	121.3.22 – Install., Integ., and Comm									
121.3.17 – Control Systems	121.5 – Conventional Facilities									

- Interfaces extend from the up- to the down-stream beam line flanges.
- Technical specification for the interfaces is supplemented with documented ~weekly integration meetings.

🛟 Fermilab HWR Cryomodule Design **Conduction Cooled Leads (FNAL)** Sub-Atmospheric HTXG Output Helium Relief Port **Helium Manifold Cooldown Manifold**

Ti Strong-Back Slow Tuner Gas Heat Half-Wave Resonator Exchanger SC Solenoid Vacuum Manifold

^{2.2} m X 2.2 m X 6.2 m

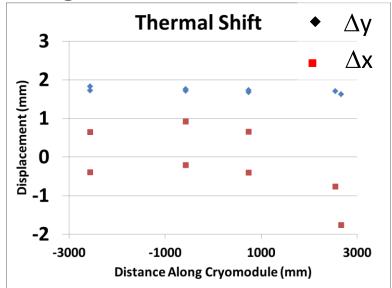
🛟 Fermilab

Charge #2

HWR Cryomodule Reviews

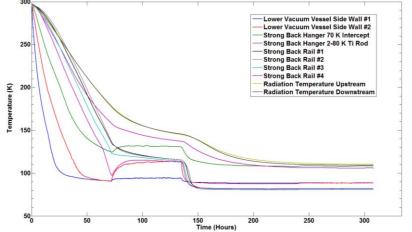
- Design/safety reviews for the HWRs and cryomodule were held at Argonne (ANL) with FNAL and ANL subject matter experts performing the reviews:
 - HWR review 5/17/2012, and
 - cryomodule review 5/16/2013.
- All design reviews were conducted in compliance with ANL's procedures, LMS-PROC-305.
- Procurement readiness reviews were carried out at ANL per ANL controls.

HWR Cryomodule Mock Assembly

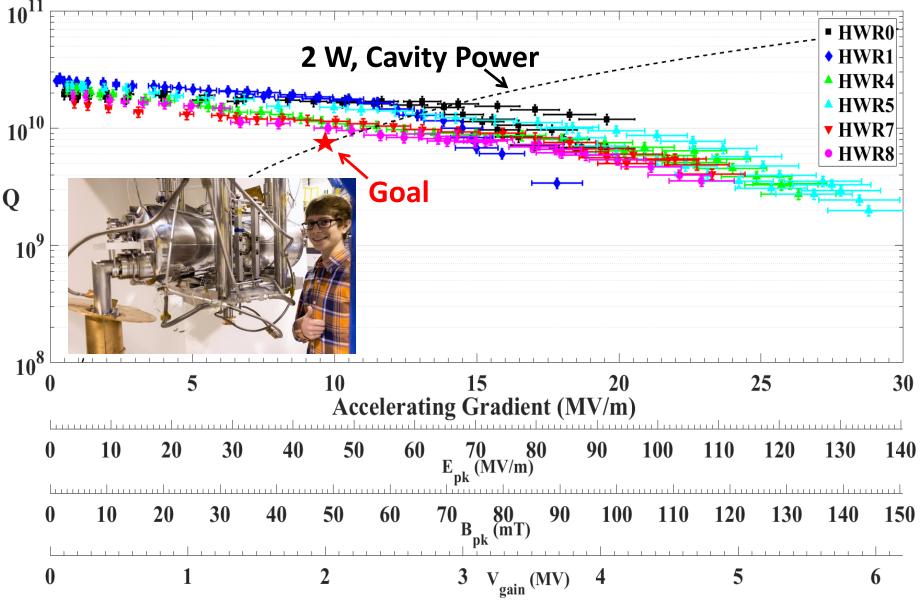


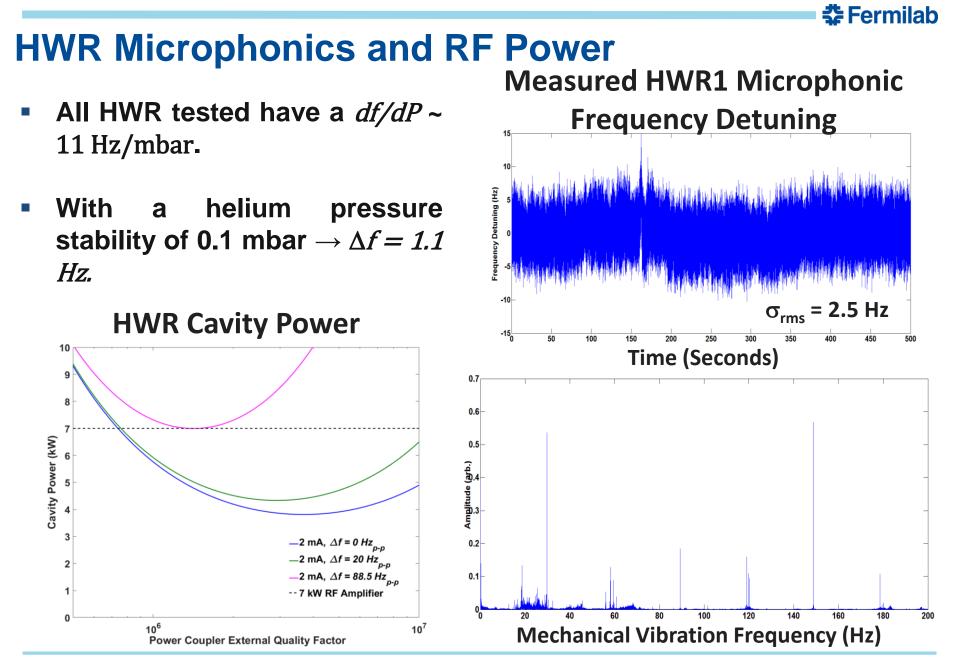
🛟 Fermilab

Cryomodule Testing Cryomodule Alignment


Alignment Measurements

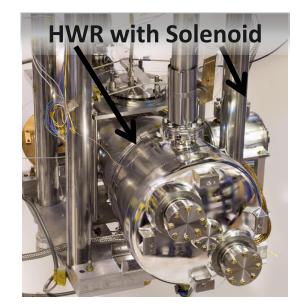
Cryomodule Assembly

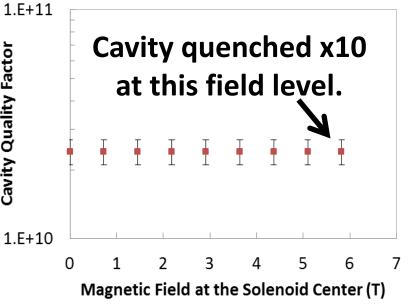

Cool Down Data



‡ Fermilab

HWR Testing

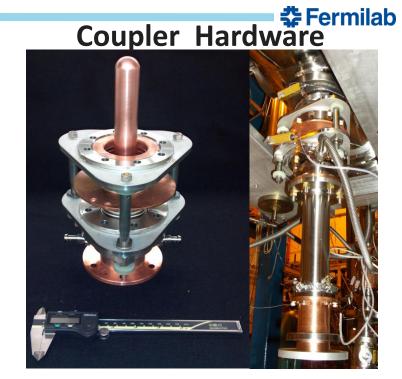

12 12/12/2017 Z. Conway | 121.3.4 Linac – HWR | SC Acceleration Modules and Cryogenics



🛠 Fermilab

HWR/Solenoid Testing

- To decrease the accelerator lattice length we have integrated x-y steering coils into the focusing solenoid package.
- Important design issue:
 - Minimize stray field @ the RF cavity to prevent performance degradation due to trapped magnetic flux.
- Measured RF surface resistance with a sensitivity of ±0.1 nOhm avity Quality Factor before and after each quench of the cavity.
- The cavity was quenched with the solenoid and the steering coils energized.
- No quantifiable change to the cavity RF surface resistance.



Power Coupler Progress

- Dressed HWR testing starting soon.
- Offline measurements of plated components have been good and are in progress.
 - Q ~ 10000 or > 80% of calculated value for pure copper
- 10 bellows assemblies are being fabricated and plated at AJ Tuck.

Copper Plating Purity Measurement

‡ Fermilab


Slow Tuners

- The HWR cryomodule will use pneumatic slow tuners → pneumatic slow tuners have been in operation at Argonne on superconducting cavities since the 1970s.
- Slow tuners are install on all HWRs during offline testing.
 - Slow tuners are actuated through their full range to verify response.
 - 162.5 MHz ± 60 kHz is exceeded for all HWRs.
 - The tuner resolution is < 0.1 Hz, our measurement limit.
- Slow tuners are operating as planned and testing has demonstrated this.

HWR with Slow Tuner

Slow Tuner

Charge #5

ESH&Q

- Safety is our highest priority.
- Work at Argonne is done in compliance with ANL ES&H.
- Providing a working piece of hardware goes hand-in-hand with work planning and control at ANL.
- FNAL and ANL collaboration on SRF is documented in the FNAL/ANL MOU on SRF Cavity Surface Processing, signed 4/21/2006 with addendum added on 8/15/2014.
- Hazards addressed at ANL include:
 - Chemical safety,
 - Cryogenic safety,
 - Pressure systems safety,
 - Radiation safety, and
 - Cryomodule component

Inside Argonne WCD 27296 WPC WCD WCD SCSPF Safety Analysis and Operating Procedures (27296.1) Copy Revise SOP Hazard Analysis WEA & Back Arme Details SOP Number & Title: SCSPF Safety Analysis and Operating Procedures Status: Approved as of 02/02/2017 Type: SOP-supporting Hazard Analyses Approving Division: PHY

testing and assembly work control documents.

Risk: HWR Cryomodule

 Risk = HWR Cryomodule does not meet technical performance requirements

WBS / Ops Lab Activity	RI-ID	Title	Technical Impact	P * Impact	P * Impact	Probability	
	τ.	▼		(k\$) 🚽	(month:	μ .	
121.03 Linac	RT-121-03-06-001	HWR Cryomodule does not meet technical performance	1 (L) - somewhat substandard	217	2.4	20.00%	

- Risk Mitigation:
 - The cryomodule is fully tested in PIP2IT prior to use in PIP-II.
 - All HWRs are tested off-line prior to installation in the cryomodule.
 - Performance testing:
 - all HWRs are tested with a high-external-Q coupler to characterize the RF losses, then
 - all HWRs are tested while fully dressed.
 - Solenoid field operation:
 - Two HWRs have been tested with a cryomodule solenoid. No performance limitations found, see slide 12.
 - All components are tested in a real cryomodule environment prior to installation in the cryomodule.

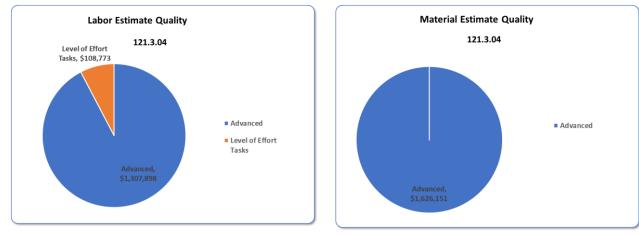
‡ Fermilab

Charge #3

Cost Summary

Basis of Estimates for COST

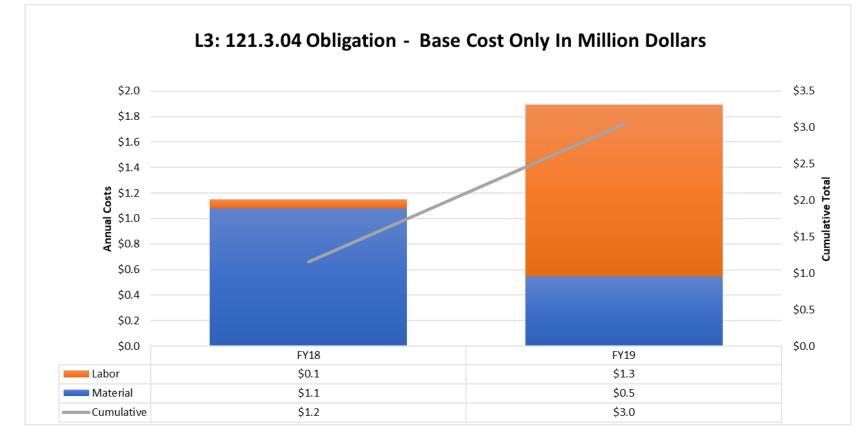
WBS Number	Title	Docdb #
121.3.4.2	BOE Document for 121.3.4.2 HWR PM and Coordination	<u>704</u>
121.3.4.3.1	BOE Document for 121.3.4.3.2 HWR Cryomodule Final Integration	<u>710</u>
121.3.4.3.2	BOE Document for 121.3.4.3.3 HWR Cryomodule: Cryomodule RF Test at PIP2IT	<u>713</u>


Level 4 WBS - Name	 Direct Hrs 	Direct M&S	Full Burden+Esc	EUC	% EUC	Total Cost
121.3.04.02 - Linac - HWR - Project Management and Coordination	708	\$2 <i>,</i> 096	\$111,380	\$11,398	10.2%	\$122,781
121.3.04.03 - Linac - HWR - CryoModule (HWR)	8,047	\$1,230,876	\$2,931,442	\$423,936	14.5%	\$3,355,383
Grand Total	8,755	\$1,232,972	\$3,042,822	\$435 <i>,</i> 334	14.3%	\$3,478,164

Full Burden + Esc = BOE + Escalation + Overhead

Cost Distribution and Estimate Quality

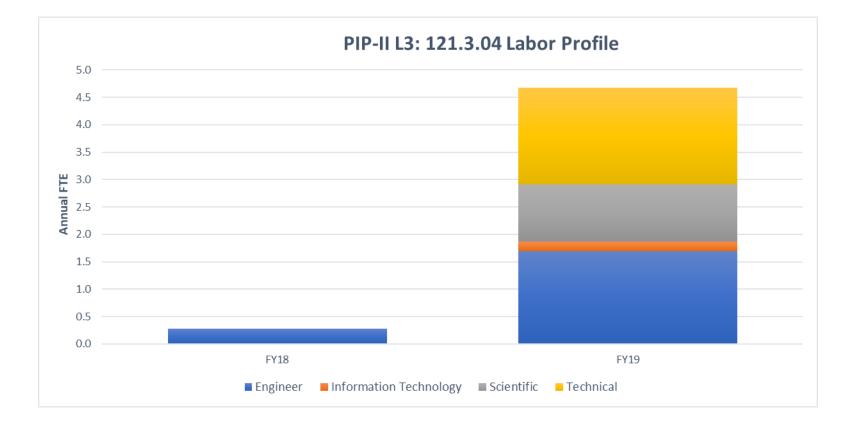
Costs = BOE + Overheads + Escalation


Estimate Quality Categories are per FermilabStandards and descriptions can be found in Docdb item number 345

‡ Fermilab

Charge #3

Obligation Profile – P6 Base Cost Only


Costs = BOE + Overheads + Escalation

‡ Fermilab

Charge #3

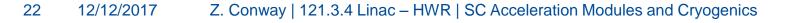
Labor Profile – P6 Hours/FTE

‡ Fermilab

Charge #3

PIP-II HWR Summary Schedule

C|C=||


<u>PIP-II PROJECT</u> - HWR CryoModule Summary Schedule

‡Fermilab

			FY18		FY19		FY20	FY21	FY22	FY	/23	FY24	FY25	FY:	26	FY27		FY28	FY29
	20		17 2018		2019		2020	2021	2022	2022 2		2024	2025	5 3	2026	202	2027		2029
		C	4 Q1 Q2	Q3 Q4	Q1 Q2 Q3	3 Q4	Q1 Q2 Q3 C	24 Q1 Q2 Q3	Q4 Q1 Q2 Q3	Q4 Q1	Q2 Q3 Q	Q4 Q1 Q2 Q3 Q	4 Q1 Q2 Q3	Q4 Q1	Q2 Q3 0	24 Q1 Q2 Q	23 Q4	Q1 Q2 Q3 C	24 Q1 Q2 Q3 Q4
Т4. б	& T0. CD	CD-:	🔶 ср	-2/CD-	3a		CD-3									:D-4			
.03 HWR CM	121.3.04.03.01 CryoModule Final Integration				Delivery	of H	WR CM from		nts Design & H ved @ Fermil tation		ation								T0. CD-4
121.3.04	121.3.04.03.02 CM RF Test					Tra	nsport, Inst	allation, Co	oldown & Col	d Test									
	121.3.0 CM R																V 13 8		

DATA EXTRACTED BY P6 FROM FY18 - DECEMBER 2017

PREPARED BY L2 & L3 LEADERs, L. LARI & J. RANDALL CHECKED BY OFFICE OF SCIENCE - FERMI SITE OFFICE SUBMITTED BY S. HOLMES

Summary

- Requirements are defined and traceable.
 - The requirements determined the design.
- Cryomodule and subsystems are almost finished.
 - Then final assembly.
- The cryomodule will be finished and beam tested as part of PIP2IT.
 - Mitigates risk of crymodule performance affecting PIP-II.
- After PIP2IT the HWR cryomodule will be ready for PIP-II.
- We would like to thank FNAL for their help and support.
- Thank you for your attention.

