Lifetime measurements with fast-timing arrays

Ben Crider
FRIB Decay Workshop
January 25-26, 2018
Overview

- Shell structure helps lay out a roadmap of interesting structural features

- Experimentally determined properties described in terms of shell structure

- Large-scale shell model calculations and ab initio calculations (NCSM, IM-SRG, and their merger) have exciting prospects as they move towards expanding our understanding of medium-mass nuclei
Overview

- Shell structure helps lay out a roadmap of interesting structural features

- Experimentally determined properties described in terms of shell structure

- Large-scale shell model calculations and ab initio calculations (NCSM, IM-SRG, and their merger) have exciting prospects as they move towards expanding our understanding of medium-mass nuclei

Shell Evolution

- Many shell model calculations predict a modified shell structure in nuclei away from the β-stability line.

FRIB Nuclei

- FRIB will enable the study of many exotic nuclei
- Even for nuclei near the extremes of the FRIB production rates, β-decay studies are a viable means for determining their low-lying properties

M. Thoennessen, Nuclear Data Sheets **118**, 85 – 90 (2014)
Energy Systematics

- Need to go beyond energy systematics to measuring transition strengths and comparing with large-scale theoretical calculations

Lifetimes around the nuclear chart

- A lot of useful information can be determined through measuring lifetimes all throughout the nuclear chart.

M. Thoennessen, Nuclear Data Sheets 118, 85 – 90 (2014)
Lifetimes of proton-rich nuclei

$^{94}\text{Ru},^{96}\text{Pd}$

M. Thoennessen, Nuclear Data Sheets 118, 85 – 90 (2014)
Lifetimes of neutron-rich nuclei

M. Thoennessen, Nuclear Data Sheets 118, 85 – 90 (2014)

Predicted Shape Coexistence in ^{70}Ni

- MCSM calculations also predict shape coexistence in ^{70}Ni
 - Deepening of the prolate potential well

- ^{68}Ni
- ^{70}Ni
Fragmentation of a fast-moving, heavy, stable beam on a thin stable target
• 76Ge beam at ~130 MeV/A
• 282 μg/cm2 9Be target
NSCL Experiment: Detection Systems

• Use beta decay to populate excited states of exotic nuclei near $A = 68$
• Combine detection systems to simultaneously achieve fast timing information and high-resolution energy measurements

Central Implantation Detectors: Implanted ions from beam and beta decays

Ions identified event-by-event are implanted. Position and arrival time recorded for all implanted ions

Some characteristic time later a decay is detected. Position and time of decay recorded.

• Decays are correlated to ions using spatial and temporal information
• Time scales: Beta decay: $\sim 10^{-3}$ s, Gamma decay: $\sim 10^{-15}$ to 10^{-9} s
Central Implantation Detectors: Implanted ions from beam and beta decays

B.P. Crider, C.J. Prokop, S.N. Liddick et al., (in prep.)

^68Cu β^- $^{2+}$ 1077.4 $^{2+}$ 1077.4-keV γ ray ^68Zn

^{70}Co \[\beta^-\] \[6^+ \rightarrow 2677\text{ keV} \rightarrow 1.05(3)\text{ ns} \[1\] \rightarrow \[4^+ \rightarrow 2229\text{ keV} \rightarrow \]

^{70}Ni

448-keV γ ray

^{68}Zn 1077 keV $t_{1/2}(\text{lit.}) = 1.61(2)\text{ ps}$

^{70}Ni 448 keV $t_{1/2}(\text{exp.}) = 1.04(24)\text{ ns}$ $t_{1/2}(\text{lit.}) = 1.05(3)\text{ ns}$

Ni 478 keV $t_{1/2} = 0.57(5)\text{ ns}$

^{70}Ni 307 keV $t_{1/2} = 1.6^{+1.2}_{-0.8}\text{ ns}$

Lifetime Results

Correlated decays into ^{70}Ni
Lifetime Results

\[478 \text{ keV}\]

Lifetime Results

Putting it all together for 68,70Ni...

Putting it all together for 68,70Ni...

Lifetime of the 0_2^+ in ^{68}Ni

C.J. Prokop, B.P. Crider, S.N. Liddick et al., (in prep.)
Conclusions

• FRIB opens up a large number of nuclei for which β-decay experiments can provide many details on their low-lying structure.

• Lifetime measurements leading to transition strength determinations are critical for understanding the underlying configurations of excited nuclear states.

• A recent experiment at NSCL coupling fast-timing and high-resolution detection systems has enabled an expansion of the information in $^{68,70}\text{Ni}$.
Acknowledgements

Collaborators

NSCL: S. N. Liddick, C. J. Prokop, J. Chen, A. C. Dombos, N. Larson, R. Lewis, S. J. Quinn, and A. Spyrou,
Padova: F. Recchia UTK: M. Alshudifat, S. Go, R. Grzywacz LBL: S. Suchyta

Funding

This work was supported in part by the National Science Foundation (NSF) under Contract No. PHY-1102511 (NSCL) and Grant No. PHY-1350234 (CAREER), by the Department of Energy National Nuclear Security Administration (NNSA) under Award No. DE-NA0000979 and Grant No. DE-NA0002132, by the U.S Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC-06CH11357 (ANL) and Grant Nos. DE-FG02-94ER40834 (Maryland) and DE-FG02-96ER40983 (UT), and by the U.S. Army Research Laboratory under Cooperative Agreement W911NF-12-2-0019.