

Rin Yokoyama

(University of Tennessee, Knoxville)

R. Grzywacz, M. Singh, T. King, S. Go, A. Keeler, J. Agramunt, N. Brewer, J. Liu, S. Nishimura, V. Phong, M. Rajabali, C. Rasco, K. Rykaczewski, J.L. Tain, A. Tolosa, and the Briken collaboration

Decay study at a fragmentation facility

Segmented scintillation detector as an implantation and decay counter

<image>

Compared to DSSSDs

- . Fast response time (~300 ps)
- . Hard to radiation damage
- . High stopping power
 - . High beta efficiency
 - . Good position correlation
- . Can be thick
- . Simple and compact

- More γ absorption
- ~10% energy
 - resolution for ions

2018/1/25

Position sensitive detector with a segmented scintillator

Surface of the segmented YSO

YSO (Yttrium Orthosilicate, Y₂SiO₅) crystal

- Effective atomic number: Z~39
- . Density: ~4.5 g/cm³
- . Wavelength: 420 nm
- . Decay time: ~70 ns
- . 48 x 48 segments
- . Each segment: 1 x 1 mm
- . Thickness: 5 mm
- . Reflective material: ESR

Multi-anode PMT Hamamatsu H12700

48.5 x 48.5 mm effective area 8 x 8 anodes

Resistive readout board

- . 4 ch for position
- 1 ch (dynode) for timing

Gamma-ray image

¹³⁷Cs source

- . Enough resolution to see 1 x 1 mm segments
- . The image is linear except along the edge

First implementation of YSO detector at RIKEN w/ BRIKEN

Ion ranges in YSO and Si

4 mm Si + 5 mm YSO are installed in this experiment

2018/1/25

Decay Station Workshop at MSU

Position correlation

Position correlation between YSO and WAS3ABi(DSSSDs) (lons that punched through)

Position correlation between implantation and beta

x-y images of beta events gated by implant position

Implanted at the top left corner

- . Implant positions obtained from YSO were consistent with those obtained from WAS3ABi.
- . Observed position correlated events between beta events and implant events.

Decay of ⁷⁶Ni

Decay curve of ⁷⁶Ni implanted into YSO

- . The decay curve was fit with a function including the daughter and grand-daughter decays.
- . Obtained half-life of ⁷⁶Ni was consistent with a literature value.

Beta efficiency

Decay spectrum of ⁷⁶Ni with r<2.5 mm position correlation

$$\begin{aligned} A_{0} &= N_{0} \int_{0s}^{10s} \lambda_{0} e^{-t\lambda_{0}} dt \\ A_{1} &= N_{0} \int_{0s}^{10s} \lambda_{0} \lambda_{1} \left(e^{-t\lambda_{0}} - e^{-t\lambda_{1}} \right) / (\lambda_{1} - \lambda_{0}) dt \\ A_{2} &= N_{0} \int_{0s}^{10s} \lambda_{0} \lambda_{1} \lambda_{2} \left\{ \frac{e^{-t\lambda_{0}}}{(\lambda_{2} - \lambda_{0})(\lambda_{1} - \lambda_{0})} + \frac{e^{-t\lambda_{1}}}{(\lambda_{2} - \lambda_{1})(\lambda_{0} - \lambda_{1})} + \frac{e^{-t\lambda_{2}}}{(\lambda_{0} - \lambda_{2})(\lambda_{1} - \lambda_{2})} \right\} dt \end{aligned}$$

Number of detected beta from ⁷⁶Ni: {(Integral 0 to 10s) – (Integral -10 to 0s)} * $A_0/(A_0+A_1+A_2)$ = 6232 * 0.35 = 2170 events

Number of ⁷⁶Ni ions implanted to YSO: 3307 ions

Beta efficiency of ⁷⁶Ni with 2.5 mm correlation: ~65%

- . Ni isotopes are expected to be implanted in the very front part of YSO.
- . Higher efficiency is expected for an ion implanted deeply.

Future design

3D readout will be enabled with SiPM Large arrays possible to fit the size of the beam spot.

Summary

- . We are developing a YSO scintillation detector as an implantation and decay counter for fragmentation facilities.
- . Implemented in an experiment at RIKEN RIBF (~78Ni region).
- . The Ion-beta correlation by YSO was successful
 - The decay curve of ⁷⁶Ni was consistent with a literature.
- . The online analysis shows ~65% beta efficiency with 2.5mm position window.

TODO

- Study of the light yield of YSO to various ions for the better way of gain adjustment.
- . Testing fast timing for the future neutron-ToF measurements.
- . 3D readout with SiPM

Beta range in YSO

Gamma-ray

Position distribution of implant and beta events

