

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Experience with GRIFFIN

Adam Garnsworthy ARIEL Principal Scientist and TRIUMF Research Scientist

FRIB Decay Station Workshop

25-26th January 2018

ISAC rare isotope facility

Isotopes delivered at ISAC (P.Kunz, Updated June 2016)

Target materials: SiC, TiC, NiO, Nb, ZrC, Ta, U Ion sources: Surface, FEBIAD, IG-LIS

Isotope Separator and ACcelerator

1 RIB delivery to experiments 500MeV p⁺ at 100μA on ISOL target

> SiC, NiO, Nb, ZrC, Ta, UC_x Targets Surface, FEBIAD, IG-LIS ion sources

ISAC-I Low-Energy <60keV Ground state + decay, material science ISAC-I Medium E <1.5MeV/u Astrophysics ISAC-II SC LINAC <10MeV/u Nuclear reactions and structure FRIB decay station workshop

TRIUMF-ARIEL

Advanced Rare-IsotopE Laboratory

1 RIB → 3 simultaneous RIBs

ARIEL Project:

- new electron linac driver for photo-fission
- new target stations and front end
- new proton beamline

E-linac and electron beamline Sept. 2014

ARIEL beams to ISAC experiments

ARIEL Completion to Science

The 8π Spectrometer

- Researchers from 24 institutions from 8 countries.
- 25 post-docs,
- 5PhD, 12MSc, 1MPhys
- Several Grad. Students still in progress

26 Jan 2018

Performed decay spectroscopy at TRIUMF-ISAC-I from 2000 to 2013

TRIUMF

The 8π Spectrometer at TRIUMF-ISAC

8

Phase One: Infrastructure + HPGe (CAD\$8.7M). Oct 2012 – April 2015

Installation in 2014, Commissioning runs in Fall 2014, Completion in May 2015

Phase Two: Suppression Shields (CAD\$3.57M). June 2016 – May 2018

Dec 2013, 8pi \rightarrow Jan \rightarrow Feb GRIFFIN Installation in 2014

First RIB 24th Sept 2014

FRIB decay station workshop

July

Apr

" (KORO ROKORO TO KORO

26 Jan 2018

GRIFFIN Footprint

Support structure: 5.2m x 1.8m 2.7m tall

Electronics Shack: 4.2m x 2.1m 3.2m tall

Total area: 9m x 9m

RTRIUMF

GRIFFIN HPGe Clover Detectors

Average Performance of all 64 crystals (16 clovers): Energy resolution@ 121keV = 1.12(6) keV Energy resolution@ 1.3MeV = 1.89(6) keV Photo-peak Rel. Eff. @ 1.3MeV = 41(1) %

Testing performed at SFU				
Dec 2012	4 Accepted			
April 2013	8 Accepted			
Jan 2014	9 Accepted			
May 2014	13 Accepted			
Oct 2014	16 Accepted			
6 months ahead of schedule				

U. Rizwan et al., NIM A 820, 126 (2016).

GRIFFIN HPGe Clover Detectors

FRIB decay station workshop

TRIUMF

J.K. Smith, A.C. MacLean *et al. In preparation for NIM A (2018).*

Development of γ-γ angular correlation analysis techniques with GRIFFIN.

- Finite size and shape of crystals means theoretical distribution is attenuated.
- Obtain 'template' from high-statistics GEANT4 simulation
- Fit template to experimental data.

Ideally:

- Fit experimental data
- Plug coefficients into simple equations
- Obtain corrected 'true' coefficients

Compton Polarimetry using GRIFFIN

Define Polarization plane from $\gamma - \gamma$ coincidence

detection. Then examine azimuthal scattering angle to

determine electric or magnetic nature of the radiation.

Dan Southall, TRIUMF research student, 2016

26 Jan 2018

FRIB decay station workshop

Compton Polarimetry using GRIFFIN

GRIFFIN Compton and Background Suppression Shields

- First Suppression shield sets have been accepted (March 2017)!
- All performance acceptance testing completed at SFU (Kenneth Whitmore, Kevin Ortner, Corina Andreoiu)
- Mechanical checks completed at TRIUMF.
- HPGe 5 sets accepted. All sets expected by May 2018.
- Ancil. Det. sets expected by April 2018.

GRIFFIN ancillary-detector BGO shield #1

GRIFFIN Compton and Background Suppression Shields

FRIB decay station workshop

- Two hemispheres of 10 plastic scintillators
- Detects beta particles with ~80% solid angle coverage
- Improves peak-to-background of HPGe spectra
- Reduces random background by ~5 orders of magnitude

RUMF PACES - Pentagonal Array for Conversion Electron

Five 5mm thick, 200mm² Si(Li), LN₂-cooled Si diode and FET

Solid angle coverage: 1.4% each, 7% total

26 Jan 2018

5607 keV 223Ra

5540 keV

FRIB decay station workshop

Gamma-Electron Angular correlations

26 Jan 2018

FRIB decay station workshop

RUMF LaBr₃ Fast-Scintillator Array for Excited-State Lifetime

- Eight LaBr₃(Ce) 2"x2" cylindrical crystal
- Source-detector distance=12.5 cm.
- GEANT4 simulated efficiency 1.4%@1.3MeV

- Hybrid analogue + digital electronics, excellent time resolution
- Effort led by Bruno Olaizola

26 Jan 2018

NWX 01

GRIFFIN+DESCANT

- 70 element array of deuterated scintillator for neutron detection
- Enables beta-gamma-ICE-neutron spectroscopy
- ~1π solid angle
- Neutron energy from time-of-flight (50cm flight path)
- Online neutron-gamma discrimination from pulse shape

GRIFFIN + DESCANT, August 2016

26 Jan 2018

FRIB decay station workshop

GRIFFIN Ancillary Detectors

Fast, in-vacuum tape system Enhances decay of interest T_{1/2} Longer ISOBAR $_{1/2}$ Shorter $J^{\pi}_{\ ISOMER}$ J^{π}_{GS} ß a,p

SCEPTAR: 10+10 plastic scintillators Detects beta decays and determines branching ratios 26 Jan 2018 GRIFFIN reuses the full suite of ancillary detectors developed for the 8π spectrometer

Zero-Degree Fast scintillator Fast-timing signal for betas

DESCANT Neutron array Detects neutrons to measure betadelayed neutron branching ratios

FRIB decay station workshop

HPGe: 16 Clovers Detect gamma rays and determines branching ratios, multipolarities and mixing ratios

> LaBr₃: 8 LaBr₃ Fast-timing of photons to measure level lifetimes

PACES: 5 Cooled Si(Li)s Detects Internal Conversion Electrons and alphas/proton<u>2</u>5

Custom Digital Electronics Modules designed and built by TRIUMF and Université de Montréal

High data through-put:

Each crystal running at 50kHz 300MB/s of filtered data, 1TB per hour ≈ 5x10⁹ gamma-gamma coincidences/hour ...to enable ultra-high-statistics studies

High accountability: Accurate deadtime knowledge Pile-up handling Event traceability from threshold crossing to disk ...to enable high-precision half-life/BR measurements

Custom Digital Electronics Modules designed and built by TRIUMF and Université de Montréal

Programmable Logic Pulse Generator

32 Channels NIM or TTL

Clock Distribution Module

10MHz Atomic Clock Low-jitter fan-out to all modules

GRIF-16 Module

16 chans 100MHz, 14bit

Master and Collector Module

- 625MB/s link to each digitizer
- 1.25Gb/s link to data storage.

26 Jan 2018

FRIB decay station workshop

High counting rates

26 Jan 2018

FRIB decay station workshop

RETRIEMF The GRIFFIN Spectrometer for precision decay studies at ISAC

RETRIEMF The GRIFFIN Spectrometer for precision decay studies at ISAC

RETRIEME The GRIFFIN Spectrometer for precision decay studies at ISAC

RETRIUME The GRIFFIN Spectrometer for precision decay studies at ISAC

RIUMF

GRIFFIN studies around doubly-magic ⁴⁸Ca

Two beamtime periods with GRIFFIN ~5.5 days

- 1 publication, 3 in preparation
- 1 PhD thesis, 1 Masters thesis

⁵⁰Sc - ⁵⁰Ti, Nov 2016, 1x10⁶pps, ~5hrs "Search for particle-hole excitations across the N=28 shell closure", C. Jones, Masters thesis (Jan 2018), in

preparation for Phys. Rev. C (2018).

⁵⁰Ca - ⁵⁰Sc, Nov 2016, 1x10⁶pps, ~2hrs

"Spectroscopy of ⁵⁰Sc and the first calculation of B(M3) strengths using *ab initio* methods", A.B. Garnsworthy, Phys. Rev. C 96, 044329 (2017).

⁴⁷K – ⁴⁷Ca, Dec 2014, 1x10⁵pps, ~90hrs "Detailed decay spectroscopy of ⁴⁷Ca", J.K. Smith, in preparation for Phys. Rev. C (2018).

⁴⁶K - ⁴⁶Ca, Dec 2014, 4x10⁵pps, ~40hrs

"Detailed spectroscopy of ⁴⁶Ca: The investigation of the β decay of ⁴⁶K with the GRIFFIN γ -ray spectrometer", J.L. Pore, PhD thesis (2017), in preparation for Phys. Rev. C (2018).

Jennifer Pore, Corina Andreoiu, SFU

⁴⁶K beam of 4x10⁵pps for ~40hrs

~200 gamma-ray transitions newly placed.

14 previously unobserved excited states (45 total observed).

- States observed to within 815keV of the 7.7MeV Q value.
- Branching ratios observed down to 10⁻³.
- Weakest γ -ray observed has intensity of 0.0015% that of the 2₁⁺ to 0₁⁺ transition.
- Compton-Suppression shields would have allowed observation of even weaker transitions.
- PhD thesis of J. Pore, Simon Fraser University.
- In preparation for PRC.

26 Jan 2018

RIUMF GRIFFIN Results: Spectroscopy of ⁵⁰Sc and *ab initio* calculations of *B(M3)* strengths

A.B. Garnsworthy, M. Bowry, B. Olaizola, J.D. Holt, S.R. Stroberg et al., PRC 96, 44329 (2017).

Gamma-gamma angular correlations with GRIFFIN confirm *M3* isomer in ⁵⁰Sc.

Isotope	E_{γ}	$J_i^{\pi} \to J_f^{\pi}$	ΔT	$T_{1/2}$	I_{γ}	α_{Tot}	I_{Tot}	Exp.
	(keV)							B(M3)
²⁴ Na [46–49]	472.2074(8)	$1^+ \rightarrow 4^+$	0	20.18(10) ms	0.9995(5)	0.000469(7)	0.9995(5)	9.10(7)
^{24}Al [50]	425.8(1)	$4^+ \rightarrow 1^+$	0	131.3(25) ms	0.83(3)	0.001144(16)	0.83(3)	2.4(6)
^{34}Cl [51]	146.36(3)	$3^+ \rightarrow 0^+$	1	31.99(3)min	0.383(5)	0.1656(24)	0.446(6)	0.10(1)
³⁸ Cl [48, 52, 53]	671.365(8)	$5^- \rightarrow 2^-$	0	$715(3) \mathrm{ms}$	0.3826(8)	0.000599(9)	1	0.0118(8)
38 K [54]	130.1(2)	$0^+ \rightarrow 3^+$	1	924.33(27) ms	$8(1) \times 10^{-6}$	0.394(7)	0.00033(4)	0.29(10)
${}^{50}Sc$ [33]	257.895(1)	$2^+ \rightarrow 5^+$	0	$350(40) \mathrm{ms}$	0.97(3)	0.0350(5)	0.99(1)	13.6(7)

First calculation of *B(M3)* strengths using *ab initio* Valence-Space In-Medium Similarity Renormalization Group method and effective operator.

				Phenomenological	VS-IMSRG
Isotope	$J_i^{\pi} \rightarrow J_f^{\pi}$	ΔT	Exp.	shell model	Effective Op.
			B(M3)	B(M3)	_
24 Na	$1^+ \rightarrow 4^+$	0	9.10(7)	19.9	4.45
^{24}Al	$4^+ \rightarrow 1^+$	0	2.4(6)	2.72	1.76
^{34}Cl	$3^+ \rightarrow 0^+$	1	0.10(1)	0.157	0.0013
^{38}Cl	$5^- \rightarrow 2^-$	0	0.0118(8)	0.0003	0.022
³⁸ K	$0^+ \rightarrow 3^+$	1	0.29(10)	0.324	0.015
50 Sc	$2^+ \rightarrow 5^+$	0	13.6(7)	13.9	9.62

0, 13.45(5)s

0+-

@твимь Ultra-high statistics beta-decay spectroscopy of ⁷²Ga-⁷²Ge

A.B. Garnsworthy, J. Henderson, J. Smallcombe, J.K. Smith, M. Bowry, et al., Beamtime Oct 2017

 $T_{1/2}$ =14 hours. Data collected for ~12 half lives.

The two GRIFFIN and PACES spectra below each represent 10GB out of a total of 8,000GB = 0.125%!

Thank you to Collaborators

The GRIFFIN Facility for Decay-Spectroscopy Studies at TRIUMF-ISAC

A.B. Garnsworthy^{a,*}, C.E. Svensson^b, M. Bowry^a, R.A. Dunlop^b, A.D. MacLean^b, B. Olaizola^a,
J.K. Smith^c, F.A. Ali^b, C. Andreoiu^d, J.E. Ash^e, W.H. Ashfield^c, G.C. Ball^a, T. Ballast^a, C. Bartlett^a,
Z. Beadle^c, P.C. Bender^{a,1}, N. Bernier^{a,f}, S. Bhattacharjee^b, H. Bidaman^b, V. Bildstein^b, D. Bishop^a,
P. Boubel^b, R. Braid^g, D. Brennan^a, T. Bruhn^a, C. Burbadge^b, A. Cheeseman^a, R. Churchman^a,
S. Ciccone^a, R. Caballero-Folch^a, D.S. Cross^d, S. Cruz^{a,f}, B. Davids^a, A. Diaz Varela^b, I. Dillmann^a,
M.R. Dunlop^b, L.J. Evitts^{a,h}, F. Garcia^d, P.E. Garrett^b, S. Georges^a, S. Gillespie^a, R. Gudapati^a,
G. Hackman^a, B. Hadinia^b, S. Hallam^{a,2}, J. Henderson^a, S.V. Ilyushkin^g, B. Jigmeddorj^b, A.I. Kilic^b,
D. Kisliuk^b, R. Kokke^a, K. Kuhn^g, R. Kruecken^a, M. Kuwabara^a, A.T. Laffoley^{b,3}, K.G. Leach^g,
J.R. Leslieⁱ, Y. Linn^a, C. Lim^a, E. MacConnachie^a, A.R. Mathews^a, E. McGee^b, J. Measures^a,
D. Miller^{a,4}, W.J. Mills^a, W. Moore^g, D. Morris^a, L.N. Morrison^{a,2}, M. Moukaddam^{a,2}, C.R. Natzke^g,
K. Ortner^d, E. Padilla-Rodal^j, O. Paetkau^a, J. Park^{a,f}, H.P. Patel^a, C.J. Pearson^a, E. Peters^a,
E.E. Peters^k, J.L. Pore^{d,5}, A.J. Radich^b, M.M. Rajabali^e, E.T. Rand^b, U. Rizwan^d, P. Ruotsalainen^{a,6},
Y. Saito^{a,f}, F. Sarazin^g, B. Shaw^a, J. Smallcombe^a, D. Southall^a, K. Starosta^d, M. Ticu^d, E. Timakova^a,
J. Turko^b, R. Umashankar^a, C. Unsworth^{a,7}, Z.M. Wang^a, K. Whitmore^{d,a}, S. Wong^a, S.W. Yates^{k,l},
E.F. Zganjar^m, T. Zidar^b

 ^aPhysical Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada ^bDepartment of Physics, University of Guelph, Guelph, ON, Canada, N1G 2W1 ^cReed College, Portland, OR 97202, USA ^dDepartment of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada ^eDepartment of Physics, Tennessee Technological University, Cookeville, TN 38505, USA ^fDepartment of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada ^gDepartment of Physics, Colorado School of Mines, Golden, CO 80401, USA ^hDepartment of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, UK ⁱDepartment of Physics, Queen's University, Kingston, ON, K7L 3N6, Canada
 ^jUniversidad Nacional Autónoma de México, Instituto de Ciencias Nucleares, AP 70-543, México City 04510, DF, México ^kDepartment of Physics & Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA
 ¹Department of Physics & Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA
 ²6 Jan 2018

SFU

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

Follow us at TRIUMFLab

f

0 Y