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Outline

• How do cross-sections enter oscillation analyses
• Simulated data method – How do we check our 

model?
• Which interaction modes do we have concerns 

about?
• What can we do about the concerns in the future?
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Where do cross-sections enter analysis
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• Apply oscillation effects to Monte Carlo as a function of true Eν

• Construct model to predict event rates and distributions at near and far detectors
• Need to ensure experiment can constrain non-oscillation elements of model
• Important to allow enough uncertainty to mitigate bias in case of incorrect model choice
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Simulated data method
• Check robustness of results to neutrino interaction 

model by using our model to fit ``simulated data”

• Simulated data are generated in two ways

1. `Data-driven’: Inflate one interaction mode to account for 

differences between current model prediction and existing 

data

2. Model choices: generate data using other models 

implemented in generator but not used in oscillation 

analysis and refit

• Fit simulated ND data, propagate constraint to SK

• Fit SK simulated data using ND constrained xsec model

• Compare fit to simulated data to nominal model Asimov

• If getting the interaction model wrong leads to 

significantly different constraints: further investigation
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T2K Cross-section Model
• Use Neut 5.3.4

• Separate CC0pi into 1p1h and 2p2h:
• 1p1h: Assume relativistic fermi gas plus Nieves et al RPA

• Use effective parametrisation of uncertainty (BeRPA)

• 2p2h: Assume Nieves et al model

• CC1pi: 
• Generate Rein-Sehgal model for resonant, non-

resonant and coherent
• Reweight to Berger-Sehgal 

• Mostly changes normalisation

• DIS: Modelled using Pythia 5.72
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2p2h
• New 2p2h uncertainties for 2017 analysis 

based on Nieves et al model
• C and O normalisation vary 

independently
• Shape allowed to vary continuously 

between totally pionless-delta like and 
non-pionless-delta like
• Also performed Martini et al 2p2h 

simulated data study
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2p2h model



CC0pi issues
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Binding Energy like effects (T2K jargon: Eb)
• Most cross-section systematics dealt with 

using reweighting
• What if the phase space you want to weight 

up isn’t filled in original model?
• Particular problem for Eb as it shifts events up 

and down in energy
• T2K were unable to add variations for this in 

time for our analysis release last year
• Eb varied simulated data study is performed
• Large uncertainty used to cover for several 

definitions of Eb: (Bodek arXiv:1801.07975) 
• Under study to reduce for future iterations
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MINERvA
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• MINERvA and NOvA see a discrepancy between 
GENIE and data in the “dip” region between CCQE 
and Resonant
• Both compensate with a procedure to scaling up either 

1p1h or 2p2h
• Discrepancy also seen in NEUT when compared to 

MINERvA data
• 1p1h and 2p2h not disambiguated by ND280
• Comparing increase to 1p1h and 2p2h needed at 

NuMI energy to that needed at T2K energy gives 
similar amount at low angles but different (lower
for T2K) at high angles
• Studies imply energy dependence of discrepancy is 

different to our model



Non-CC0pi
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Predicted Rates at SK
Observed Rates

Sample δCP = -π/2 δCP = 0 δCP = π/2 δCP = π

CCQE 1-Ring e-like !-mode 73.5 61.5 49.9 62.0 74

CC1pi 1-Ring e-like !-mode 6.92 6.01 4.87 5.78 15

CCQE 1-Ring e-like !̅-mode 7.93 9.04 10.04 8.93 7

CCQE 1-Ring μ-like !-mode 267.8 267.4 267.7 268.2 240

CCQE 1-Ring μ-like !̅-mode 63.1 62.9 63.1 63.1 68

CC1pi
• T2K CC1pi like far detector sample sees more events than expected
• p-value to see similar fluctuation in one of 5 samples is 12%

• Known deficiencies in CC1pi model: e.g. treatment of multiple resonances
• New treatment of non-Δ(1232) resonance part (Minoo model) addresses some of these

• Simulated data study has been performed

• Simulated data study reweighted SK pion spectrum to match ND280 data-MC difference
• See S. Dolan’s talk for planned CC1pi measurements partly driven by this
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Additional Processes
• Composed mainly of DIS and other multipion

• Subdominant component for T2K

• T2K currently treat this with a single energy dependent 
normalisation uncertainty: 0.4/Eν

• This parameter is starting to be pulled in fits

• Indicates that it may be time for a more advanced 
treatment

• T2K is considering:
• Parton distribution function uncertainties
• Bodek-Yang corrections
• Hadron multiplicity uncertainties
• Revisiting overall normalisation uncertainties
• Work in progress by T2K not yet finalised
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Effects on Analysis
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Current status
• Several simulated data studies give 

significant Δm2
32 biases

• Indicates that model doesn’t have freedom 
to replicate reco-true energy mapping for 
these cases
• It is possible for simulated data to show 

significant bias on θ23 as well e.g. 
• Additional systematics being added
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Impact on δCP

• Need to check how changes to Δχ2 from simulated 
data studies affect statements on δCP

• Take Δχ2  difference observed in simulated data 
study (top plot) and shift observed Δχ2 in data 
(bottom plot) by that amount
• Impact on δCP intervals is small for all simulated 

data sets
• Statement that CP conserving values are excluded 

at 95% CL is unaffected
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Mitigation plans
General Method:
• Biases caused by inability of model to accommodate

different reco to true interaction rate mapping
• Add parameters to model to allow for that variation

• Most simulated data sets cover known model 
deficiencies so variations well motivated

• In many cases, e.g. Eb, cannot currently make full theory based variation
• Add freedom to move event weights linearly from 1 to:

• Approximates the missing freedom of the model
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!"#$%& '( %)%*+, -* $-* .+ /0 -* /0 ,-#"1.+%2 2.+.
!"#$%& '( %)%*+, -* /0 $-* 3&%2-4+%2 $5 #'2%1 6ℎ%* (-+ +' !8280 ,-#"1.+%2 2.+.

T2K work in progress



Mitigation plans
• Method on previous slide could be applied generically to a simulated data set
• Additionally in the case of Δm2

32 Gaussian smearing of post-fit contours can be 
done as the parameter is approximately Gaussian
• Width chosen to be quadrature sum of biases seen in independent simulated data studies
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Final sensitivity coming soon!



Future
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What can we do in future?
• Improve interaction model: better Eb treatment planned for 2019
• A lot of issues involve unobserved hadrons: e.g. inferred kinematics (see S. Dolan)
• Several methods to get better measurements:
• Get a lower threshold detector, e.g. ND280 upgrade (see S. Dolan) or HPTPC
• Low threshold measurements with several hadrons can constrain high threshold 

experiments where only highest momentum hadron is seen
• Do novel things with the one we’ve got, e.g. Vertex activity, Gas/wall analyses
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More vertex 
activity implies 
more below 
threshold hadrons



HPTPC
• High pressure gas TPC combines low threshold and acceptable mass
• Proton momentum threshold ~50 MeV

• Can also switch between target gases
• Optically read out prototype being builtin the UK
• Design tested before on DMTPC experiment:

DOI: 10.1063/1.3700603
• Beam test due in August: CERN-SPSC-2017-030
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https://arxiv.org/ct?url=http://dx.doi.org/10.1063/1.3700603&v=6cae6557


Summary
• We know our model is far from perfect in several areas
• CC0pi: Inferred kinematics, MINERvA/NOvA discrepancy, theory (Eb)
• CC1pi: Known deficiencies, improvements expected soon (Minoo model)
• Other CC: Small contribution with simplistic treatment, will be reviewed

• We try to assess whether this matters using simulated data

• We have a procedure to add an ‘effective’ uncertainty for problematic 
simulated data studies

• Better solution is to find ways to incorporate theory driven uncertainties in 
the analysis
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Backup
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List of all xsec parameters
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CC0pi Inferred Kinematics
• Kinematic energy reconstruction assumes interaction mode and stationary 

initial nucleon
• System fully specified from lepton kinematics

• If you identify a proton in the event you can compare inferred and 
measured energy
• Δp=|pmeasured|- |pinferred|
• See S. Dolan’s talk for more details
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CC0pi Inferred Kinematics
• Δp=|pmeasured|- |pinferred|

• RFG+RPA model shows differences 

with data

• Present when modelled with both 

NEUT and GENIE

• Need to check this doesn’t bias 

oscillation results

• Concerning if underlying 1p1h/2p2h 

models are wrong

• ND280 data driven, Benhar spectral 

function and Martini 2p2h model 

simulated data test robustness to 

model variations
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arxiv:1802.05078

RFG (Relativistic Fermi Gas)

RPA (Random Phase Approximation)



PMNS matrix
• Ignoring overall phase, general 3x3 unitary matrix can be broken down into 3 rotation matrices and 

a complex phase

! =
1 0 0
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• Oscillation probability in vacuum given by:
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• Frequency of oscillation set by squared mass difference
• Relevant distance scale for experiment is L/E
• Amplitude of oscillation decided by mixing angles
• CPT symmetry implies P(⍺→β) = P(P̅ → Q⍺)
• Non-zero complex phase, δCP, would lead to CP violation
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The T2K Experiment
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295 km

Kamioka

ND280

J-PARC

Tokai

Super-K

• Muon (anti) neutrino beam generated at J-PARC
• Near detector complex 280m from target measures 

beam before oscillation
• Beam travels 295 km to 50 kton Super-K detector to 

be measured after oscillations
• ~500 researchers, 62 institutes, 11 countries



Beam operation

02/03/2018P. Dunne 28

• Accumulated 14.7x1020

protons-on-target (POT) in 
neutrino mode and 7.6x1020

POT in antineutrino mode
• 29% of approved T2K-I POT

• Previous results used 
7.5x1020 POT !-mode, 
7.5x1020 POT !̅-mode
• Phys. Rev. Lett. 118 (2017) no. 15, 151801

• Operated at stable beam 
power of 470 kW this year
• Enabled doubling !-mode 

data
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Neutrino oscillations at T2K
• Muon (anti)neutrino disappearance
• Location of dip determined by Δm2

23
• Depth of dip determined by sin2(2θ23)

• Electron (anti)neutrino appearance
• Leading term depends on sin2(θ23), sin2(θ13) 

and Δm2
23

• Sub-leading dependance on δCP
• δCP = π/2: fewer neutrinos, more anti-neutrinos 
• δCP = -π/2: more neutrinos, fewer anti-neutrinos 

• Matter effects give dependence on mass hierarchy
• For 295km baseline first oscillation maximum is at 

0.6 GeV
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νμ disappearance

νe appearance



Detecting neutrinos
• Use charged-current neutrino-nucleus interactions
• Detect energetic final state lepton
• Gives kinematic information and flavour ID

• Oscillation effects vary with Eν
• Recoil hadrons often below detection threshold and 

nuclear effects important so hard to reconstruct
• Construct variable as close to true energy as possible
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M. Hartz

• Assume quasi-elastic scattering from single bound nucleon (CCQE):

!"#$% =
'() − '+ − !, 2 − '$) + 2 '+ − !, !/

2 '+ − !, − !/ + 0/cos4/
• Only uses particle masses, lepton kinematics and nuclear model



Near detectors

INGRID
• On-axis detector
• Monitors beam direction 

and constrains flux
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ND280
• 2.5o off-axis (same as Super-K)
• Constrains cross-section and flux 

uncertainties 
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T2K Run1
Jan.2010-Jun.2010

T2K Run2
Nov.2010-Mar.2011

T2K Run3
Mar.2012-Jun.2012

T2K Run4
Oct.2012-May.2013

T2K Run5
May.2014
-Jun.2014

T2K Run6
Oct.2014-June.2015

T2K Run7
Feb.2016-May.2016

T2K Run8
Oct.2016-Apr.2017

INGRID
• Design  beam direction tolerance 1 mrad
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ND280

•Measures neutrinos before they oscillate

• Two fine-grained detector (FGD) targets
• FGD1 – Active carbon target
• FGD2 – Active carbon and passive water 

layers (same nucleus as SK)

•Magnet + three TPCs
• Refurbished 0.2T UA1 magnet
• Particle charge + momentum from 

curvature
• Particle ID From dE/dx – 0.2% mis-ID rate
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Super-K
• 50 kt water-Cherenkov 

detector
• 11,000 20” PMT inner detector
• 40% photo-coverage

• 2,000 8” PMT outer detector
• Cosmic veto/exiting particles

• Not magnetised
• Particle ID via Cherenkov ring 

pattern:
• Muons produce sharp rings
• Electrons scatter more

→ fuzzier rings
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• ND280 aims to constrain cross-section and flux uncertainties

• Separate samples for FGD1 and FGD2: allows separation of Carbon and Oxygen

• Separate samples by particle content: attempt to isolate interaction modes

• SK is not magnetised so neutrino contamination of antineutrino beam is 

important to constrain

FGD1 FGD2
ν events in neutrino mode CC0pi CC1pi CCNpi CC0pi CC1pi CCNpi

#̅ events in antineutrino mode CC1track CCNtrack CC1track CCNtrack

ν events in antineutrino mode CC1track CCNtrack CC1track CCNtrack

FGD1 FGD2
ν events in neutrino mode CC0pi CC1pi CCNpi CC0pi CC1pi CCNpi

#̅ events in antineutrino mode CC1track CCNtrack CC1track CCNtrack

ν events in antineutrino mode CC1track CCNtrack CC1track CCNtrack

FGD1 FGD2
ν events in neutrino mode CC0pi CC1pi CCNpi CC0pi CC1pi CCNpi

#̅ events in antineutrino mode CC1track CCNtrack CC1track CCNtrack

ν events in antineutrino mode CC1track CCNtrack CC1track CCNtrack

ND280 samples and selection
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SK samples
• Looking for νμ disappearance and νe appearance
• Neutrino mode:

• 1 μ-like ring, ≤1 decay electron
• 1 e-like ring, 0 decay electrons

• Antineutrino mode:
• 1 μ-like ring, ≤1 decay electron
• 1 e-like ring, 0 decay electrons

• All four samples target charged-current quasi-elastic (CCQE) interactions
• Recently we also include neutrino mode sample targeting charged-

current interactions with an additional pion
• Neutrino mode: 1 e-like ring, 1 decay electron
• Reconstructed energy formula adjusted accordingly

• Combination of new sample and increased FV 
equates to 30% increase in event rate for same 
POT in neutrino mode
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Near Detector Fit Results
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Near detector fit results
• Flux and cross-section parameters have similar effects
• ND Fit leads to significant anti-correlation reducing overall uncertainty

• Fit reproduces data well (p-value 0.47)
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ND Fit

FGD2 CC0Pi 
neutrino mode



Predicted and observed Super-K event rates

• Other oscillation parameters at set A values: maximal θ23

• Number of events observed generally agrees with oscillated predictions
• e-like sample rates are most consistent with δCP = -π/2 hypothesis
• μ-like sample rates consistent within statistical and systematic errors
• CC1π rate shows large upwards fluctuation

• p-value for fluctuation of this size in at least 1 of 5 samples: 11.9%
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Predicted Rates
Observed Rates

Sample δCP = -π/2 δCP = 0 δCP = π/2 δCP = π

CCQE 1-Ring e-like !-mode 73.5 61.5 49.9 62.0 74

CC1π 1-Ring e-like !-mode 6.92 6.01 4.87 5.78 15

CCQE 1-Ring e-like !̅-mode 7.93 9.04 10.04 8.93 7

CCQE 1-Ring μ-like !-mode 267.8 267.4 267.7 268.2 240

CCQE 1-Ring μ-like !̅-mode 63.1 62.9 63.1 63.1 68



Spectra
• Spectra for each of the 5 samples at SK
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!-mode 
μ-like

!-mode 
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μ-like !̅-mode 

e-like

SK spectra



Size of systematic uncertainties
% Errors on predicted event rates, Osc. Parameters as for rates

1R μ-like 1R e-like

Error Source !-mode !̅-mode !-mode !̅-mode !-mode CC1π !-mode/!̅-mode

SK Detector 1.86 1.51 3.03 4.22 16.69 1.60

SK FSI+SI+PN 2.20 1.98 3.01 2.31 11.43 1.57

ND280 const. flux & xsec 3.22 2.72 3.22 2.88 4.05 2.50

σ(νe)/σ(#νe) 0.00 0.00 2.63 1.46 2.62 3.03

NC1ɣ 0.00 0.00 1.08 2.59 0.33 1.39

NC Other 0.25 0.25 0.14 0.33 0.98 0.18

Total Systematic Error 4.40 3.76 6.10 6.51 20.94 4.77
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• Total error in the 4-7% range (except CC1pi)
• Errors constrained by ND280 contribute 3-4% uncertainties
• Error on !-mode /!̅-mode ratio 4.8%

• important for CP violation



Far Detector Event Rate 
Predictions and Uncertainties
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Oscillation parameters used for predictions

Set A Set B

sin2θ12 0.304 0.304

sin2θ23 0.528 0.45

sin2θ13 0.0219 0.0219

Δm2
12 7.53x10-5 eV2 7.53x10-5 eV2

Δm2
23 2.509x10-3 eV2 2.509x10-3 eV2

δCP -1.601 0
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• Define two sets of oscillation parameter values used for event rate and sensitivity 
predictions
• Parameters generally at previous T2K 2013 best fit values



Sensitivities
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Set A sensitivity
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Integrate out sin2θ13
dependence

Integrate out sin2θ13
dependence

Impose reactor constraint 
on sin2(2θ13) (PDG 2016)

T2K samples only T2K samples only

T2K +reactor constraint T2K +reactor constraint



Comparison to 
Summer 2016
sensitivity
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2016 T2K +reactor constraint

2017 T2K +reactor constraint



Set A vs Set B sensitivity
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Set A: sin2θ23=0.528, δCP = -1.601 Set B: sin2θ23=0.45, δCP = 0



Data results
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Appearance parameter constraints
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T2K data only T2K +reactor constraint

• T2K value for sin2θ13 is consistent with PDG 2016 average (0.0219)



δCP Constraint

02/03/2018P. Dunne 50

T2K data only T2K +reactor constraint

• CP conserving values outside 2σ (95.4%) interval for T2K+reactor constraint



Constraint vs sensitivity
• Observed constraint stronger than predicted sensitivity
• Studied how likely this was to happen
• Generated many toy data sets with statistical and 

systematic fluctuations around δCP=-π/2, normal 
hierarchy (NH)
• Ran fits to these spectra to determine δCP constraint
• Observed constraint falls within 95.45% for most δCP

points
• 30% of experiments exclude δCP = 0 at 2σ
• 25% of experiments exclude δCP = π at 2σ
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Normal hierarchy

Inverted hierarchy



Biprobability plots

• Andy’s biprobability plots
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Octant and hierarchy preferences
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T2K +reactor constraint

Posterior probabilities (T2K + reactor constraint)
sin2θ23<0.5 sin2θ23>0.5 Sum

NH (Δm2
23>0) 0.193 0.674 0.868

IH (Δm2
23<0) 0.026 0.106 0.132

Sum 0.219 0.781

• Result consistent with maximal sin2θ23
• Preference for normal hierarchy
• Systematics may change due to simulated data studies



Future plans
T2K-II
• T2K target protons on target (POT) is 7.8x1021

• T2K-II is a proposal to extend target to 20.0x1021 POT by ~2026
• Upgrade Main Ring power supply to increase from 0.4->1 Hz 

running
• Beam power increase up to 1.3 MW
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Other beam and detector upgrades
• Neutrino horns will run at 320 kA from next year

• Reduces wrong sign contamination in antineutrino mode

• ND280 will be upgraded to improve high-angle acceptance
• More similar to SK improving cross-section constraint

• SK will be refurbished during Summer 2018 to allow Gd
addition in 2019/2020
• Gd enables neutron tagging



T2K-II sensitivity

• If current preferred δCP is true T2K-II has potential for 3σ discovery
• Size of systematic uncertainties has large effect on sensitivity
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Hyper-K
• Larger successor experiment to Super-K
• 187 kton fiducial volume (7x T2K design)
• 1300 kW beam power (2x T2K design)
• Aiming for 5σ δCP observation unless value is 

unfavourable
• Possibility to build second tank in Korea at 

second oscillation maximum
• Oscillation effects look different
• Reduces systematic sensitivity and breaks 

degeneracies
• Also gives world leading proton decay 

measurements and supernova neutrino 
sensitivity
• Aim for physics data taking in 2026
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HPTPC – High Pressure TPC
• Reducing systematics key to future oscillation 

measurements
• DUNE & HK aim for ~1%

• Current MC generators give different predictions 
just outside accessible energy range
• Gaseous target has much lower threshold
• Gas density usually too low for high interaction rate

• Try high pressure gas
• Building 5 bar prototype TPC at RHUL
• Beam test at CERN planned for next year
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Model constraints

02/03/2018P. Dunne 58

ND280 Detector 
ModelFlux Model

Hadron 
Production Data

INGRID/Beam 
Monitor Data

External Cross-
section Data

Cross-section 
Model

Super-K Detector 
Model

Super-K 
Atmospheric 

Data

Event Rate and 
Distribution 

Model

Oscillation 
Parameters

Interaction rates Detector uncertainties

Near Detector 
Prediction

Far Detector 
Prediction



• Markov chain fit used by Bayesian 
analysis has all values of all 
parameters for all steps
• Allows study of effect of all 

combinations of parameters without 
extra fits
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Triangle plots
T2K data only



Changes to model this year – Cross section
• NEUT neutrino interaction MC generator has been significantly 

improved in recent years:

• New tune of pion production model to external hydrogen and 

deuterium data

• Inclusion of multi-nucleon scattering processes: Valencia 2p-2h model 
(Phys. Rev. C83 (2011) 045501)

• Improvements to the CCQE model:

Included the effect of long-range nucleus correlations

(calculated using random phase approximation, RPA)

• Analysis now includes new parametrisations of the 

uncertainties on these processes
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more on nµ disappearance
• nµ disappearance probability in vacuum 

E APPROXIMATED νµ → νµ OSCILLATION PROBABILITY IN VACUUM
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Figure 71: The change of the reconstructed energy distribution of SK νµ candidate events under
the change of Pion-less delta decay by ±1σ. The “σ” represents the error size of Pion-less delta
decay. The oscillation effect is included. The left plot shows the the energy distribution for each
case and right plot shows the fractional deviation from the center.

E Approximated νµ → νµ oscillation probability in vacuum587

νµ → νµ oscillation probability in vacuum is expressed as588
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Here,589
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In case of T2K, the neutrino propagation distance, L, is 295 km and the neutrino energy, Eν590

peaks at ∼ 0.6 GeV. Therefore, sin2∆solar and sin 2∆atm approximate to 0. Consequently, you591
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E APPROXIMATED νµ → νµ OSCILLATION PROBABILITY IN VACUUM
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Figure 71: The change of the reconstructed energy distribution of SK νµ candidate events under
the change of Pion-less delta decay by ±1σ. The “σ” represents the error size of Pion-less delta
decay. The oscillation effect is included. The left plot shows the the energy distribution for each
case and right plot shows the fractional deviation from the center.
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T2K: L = 295 km, En peaks at ~ 0.6 GeV -> sin2Dsolar ~ 0, sin2Datm ~ 0

P νµ →νµ( ) ~1− cos4θ13 ⋅sin2 2θ23 + sin2 2θ13 ⋅sin2θ23( ) ⋅sin2 Δm31
2 ⋅L
4E

Leading-term Next-to-leading

nµ disapp. probability depends on sin22q13 sin2q23 to second order 
-> Can be used in combination with known sin22θ13 to resolve the θ23 octant 
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T2K +reactor constraint



Dcp split by hierarchy- T2K+reactor

• Dcp limits for each hierarchy separately
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Inverted hierarchyNormal hierarchy



T2K data only disappearance parameters
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• Results from last August presented with final 

systematics pending due to non-neglible

biases in ND280 data driven simulated data

• Effect on θ13 and δCP appears very small

• Largish effects on Δm2
23 and θ23

• Update:

• Investigation underway

• Additional systematics being added to analysis

• Still not expecting much impact on θ13 and δCP
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