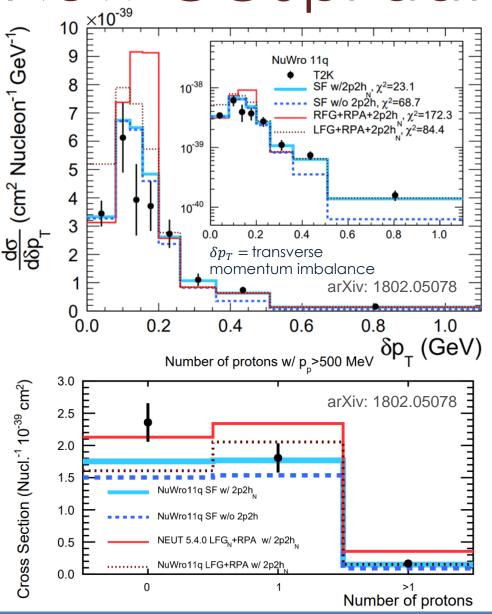
The new CCOpi data release

arXiv:1802.05078

Stephen Dolan


Stephen.Dolan@llr.in2p3.fr

New CCOpi data release

 Should be easy to reproduce plots like this from the paper

New CC0pi data release

- 4-dimensional non-uniform binning:
 - Number of protons above 500 MeV/c
 - 0 bin in p_{μ} , $\cos \theta_{\mu}$
 - 1 bin in p_p , $\cos \theta_p$, $\cos \theta_\mu$
 - More just one bin

- 4-dimensional non-uniform binning:
 - Number of protons above 500 MeV/c
 - 0 bin in p_{μ} , $\cos \theta_{\mu}$
 - 1 bin in p_p , $\cos \theta_p$, $\cos \theta_\mu$
 - More just one bin

The bin mapping text file helps keep track of all of this


```
trueNp
0
trueCThmu
-1 -0.3 : 0
-0.3 0.3
truePmu
0 0.3 : 1
0.3 0.4 : 2
0.4 30 : 3
0.3 0.6
truePmu
0 0.3 : 4
0.3 0.4 : 5
0.4 0.5 : 6
0.5 0.6 : 7
0.6 30 : 8
```

- 4-dimensional non-uniform binning:
 - Number of protons above 500 MeV/c
 - 0 bin in p_{μ} , $\cos \theta_{\mu}$
 - 1 bin in p_p , $\cos \theta_p$, $\cos \theta_\mu$
 - More just one bin

Provide a linearised result and full covariance matrix for easy χ^2 calculations

- 4-dimensional non-uniform binning:
 - Number of protons above 500 MeV/c
 - 0 bin in p_{μ} , $\cos \theta_{\mu}$
 - 1 bin in p_p , $\cos \theta_p$, $\cos \theta_\mu$
 - More just one bin

A TH2Poly can describe the entire result in the 0 protons above threshold bin, but individual slices are also provided as well as the result integrated over p_{μ}

- 4-dimensional non-uniform binning:
 - Number of protons above 500 MeV/c
 - 0 bin in p_{μ} , $\cos \theta_{\mu}$
 - 1 bin in p_p , $\cos \theta_p$, $\cos \theta_\mu$
 - More just one bin

txt.qsMaid fibition[🙀 multidif results.root Result:1 CovarianceMatrix;1 NoProtonsAbove500MeV;1 🖃 🔄 OneProtonAbove500MeV;1 Resultin Muon Cos Theta; 1 MuonCosThetaSlice 1 k MuonCosThetaSlice_2_pol MuonCosThetaSlice_3_poly MuonCosThetaSlice_1D_0;1 MuonCosThetaSlice_1D_1;1 Muon Cos Theta Slice_1 D_2;1 Muon CosThetaSlice_1 D_3;1 MuCThSlice_1_PCthSlice_0 MuCThSlice_2_PCthSlice_0 MuCThSlice_2_PCthSlice MuCThSlice_3_PCthSlice Aresult cthmu2 Proton Multiplicity:

Need a TH2Poly in p_p , $\cos\theta_p$ for each slice of $\cos\theta_\mu$ to describe the result with one proton above threshold. Individual slices and integrated results are also provided

- 4-dimensional non-uniform binning:
 - Number of protons above 500 MeV/c
 - 0 bin in p_{μ} , $\cos \theta_{\mu}$
 - 1 bin in p_p , $\cos \theta_p$, $\cos \theta_\mu$
 - More just one bin

The first two bins are just the integral of the 0 and 1 proton bins. A covariance matrix is provided for easy comparison to the proton multiplicity result.

Playing the NUISANCE

- Also plan to release results as NUISANCE samples
- Makes generator comparisons and model tuning extremely simple

sample T2K_CCOpinp_STV_XSec_1Ddpt_nu GENIE:/data/t2k/dolan/generators/genie/mar17/R-2_12_4_defaultpMEC/gntp.0.ghep.root
sample T2K_CCOpinp_STV_XSec_1Ddphit_nu GENIE:/data/t2k/dolan/generators/genie/mar17/R-2_12_4_defaultpMEC/gntp.0.ghep.root
sample T2K_CCOpinp_STV_XSec_1Ddat_nu GENIE:/data/t2k/dolan/generators/genie/mar17/R-2_12_4_defaultpMEC/gntp.0.ghep.root

2017 JINST 12 P01016, arXiv:1612.07393, https://nuisance.hepforge.org/

To regularise or not to regularise

- The STV analysis provides both regularised and unregularised results.
 Which should you use?
- Significant discussion of this in the README, in brief:
 - Unregularised result has minimal bias, but is almost meaningless without the accompanying covarainces
 - Regularised result uses a prior to effectively smooth the result and push covarainces onto the diagonal
 - Regulation used is much much weaker than D'Agostini 1!
 - Use regularised result when comparing to anything "byeye" (this is almost always the result to use when showing any comparisons)
- Use unregularised result when looking for a quantitative conclusion, e.g. fitting model parameters.

To regularise or not to regularise

Use unregularised result when looking for a quantitative conclusion, e.g. fitting model parameters.

- This is really easy to make and can be very useful when your result is being used in a likelihood fit to place external constraints for oscillation analyses (as T2K does).
- Please can we have it? (we don't care how bad it "looks")

Using multiple T2K results

- What if you want to use T2K CC0π and CC1π results at the same time?
- The data forming the main result from one is used as a background constraint for the other.
- Need a way of providing the correlations between these results.
- In future could investigate ways of providing these.

Thoughts / concerns

What happens if the flux prediction changes?

 Not really possible to provide separate flux covariance – control samples correlate all systematics

What if we find out the background prediction was crazy?

 Mitigated through data-driven background subtraction, but no easy way to provide a way of altering background subtraction from unfolded result

What if my errors are really not Gaussian?

- Will become more of a problem as systematics dominate more
- Could release high dimensional likelihood surfaces?
- Would need to build a set of tools to use this

Thank you for listening