
Rucio Concepts

and principles

Rob Gardner, Benedikt Riedel Mario Lassnig
University of Chicago CERN

Open Science Grid Blueprint
December 8, 2017

This talk

● These slides are a compendium of
individual topics relevant for input to further
discussion today

● special thanks to Mario Lassnig who
provided the vast majority of input

2

Rucio in a nutshell
● Main functionalities

○ Discovery, Location, Transfer, Deletion
○ Quota, Permission, Consistency
○ Monitoring, Analytics
○ Can enforce computing models

● Integration with workload
management

● Automation of operations
● Enables heterogeneous data

management
○ No vendor/product lock-in
○ Able to follow the market

3

1+ Petabyte/day
2+ million files/day

Total ATLAS
data

1+ billion files

Namespace handling

4

● Smallest addressable unit is the file
● Files can be grouped into datasets
● Datasets can be grouped into containers
● Names are partitioned by scopes

○ To distinguish users, groups and
activities

○ Accounts map to users/groups/activities
● Multiple data ownership across accounts
● Large set of available metadata, e.g.

○ Data management: size, checksums, creation times,
access times, …

○ Physics: run identification, derivations, events, …
○ ...

Declarative data management

● Express what you want, not how you want it
○ e.g., "3 copies of this dataset, distributed evenly across two continents, with 1 copy on TAPE"
○ Rules can be dynamically added and removed by all users, some pending authorisation
○ Evaluation engine resolves all rules and tries to satisfy them by with transfers/deletions

● Replication rules
○ Lock data against deletion in particular places for a given lifetime or pin
○ Primary replicas have indefinite lifetime rules
○ Secondary replicas are dynamically created replicas based on traced usage and their

access popularity

● Subscriptions
○ Automatically generate rules for newly registered data matching a set of filters/metadata
○ e.g., spread project=data17_13TeV and data_type=AOD evenly across T1s

5

Monitoring

● RucioUI
○ Provides several views for different types of users
○ Normal users: Data discovery and details, transfer requests
○ Site admins: Quota management and transfer approvals
○ Admin: Account / Identity / Storage management

● Monitoring
○ Internal system health monitoring (Graphite / Grafana)
○ Transfer / Staging / Deletion monitoring using industry-stranding architectures

(ActiveMQ / Kafka / Spark / HDFS / ElasticSearch / InfluxDB / Grafana)

● Analytics
○ Periodic full database dumps to Hadoop (pilot traces, transfer events, …)
○ Used studies, e.g., transfer time estimation which is now already in a pre-production stage

6

Third party copy

● Rucio provides a generic transfertool API
○ submit_transfers(), query_transfer_status(), cancel_transfers(), ...
○ Independent of underlying transfer service
○ Asynchronous interface to any potential third-party tool

● Currently only available implementation of transfertool API is FTS3
○ Additional notification channel via ActiveMQ for instant acknowledgments
○ Potential to include GlobusOnline for improved HPC data transfers

● FTS3 Deployment
○ CERN Pilot, CERN Production, RAL Production, BNL Production
○ We distribute our transfers across all FTS3 servers based on file destination

■ (We also have one dedicated for OSG use in production)

7

Topology

● Storage systems are abstracted as Rucio Storage Elements (RSEs)
○ Logical definition, not a software stack
○ Mapping between activities, hostnames, protocols, ports, paths, sites, …
○ Define priorities between protocols and numerical distances between sites
○ Can be tagged with metadata for grouping
○ Files on RSEs are stored deterministically via hash function

■ Can be overridden (e.g., useful for Tier-0, TAPE, fixed data output experiments, …)

● Rucio's topology can exist standalone outside an information catalogue
○ However, for a non-trivial amount of sites this can quickly become infeasible

■ We suggest to have a flexible way of describing resources
○ For ATLAS, we use AGIS (ATLAS Grid Information System) and sync to Rucio via Nagios
○ AGIS is now evolving into generic CRIC (Computing Resource Information Catalogue)

8

9

Key design principles
● Horizontal scalability of servers and services
● Data streams

○ Stateless API — serve each request independently
○ Servers can handle arbitrary length responses (e.g., list 1 billion files)

● Work sharding
○ All daemons share their work-queues
○ Algorithm for work selection independent of length of workqueue!
○ Elastic and fail-safe

■ If one service goes down (e.g, node failure) others take over
automatically, no need to reconfigure or restart

● Fault-tolerance
○ Fail hard and early, but keep running and retry once up

Rucio daemons and operations
● 10 daemons

○ Minimum 2 daemons required
■ Rule evaluation daemon, Transfer handling daemon

○ All others give extra functionality and can be enabled as required
■ Deletion, Rebalancing, Popularity, Tracing, Messaging, …

● Sites do not run any Rucio services — they only need to operate storage

● ATLAS DDM Central Team operates 320+PB on 120 sites with <2 FTE!
○ Due to all the automations that Rucio daemons provide

10

Known Rucio limits
● Backend database performance

○ Scaling tests up to LHC Run-3 expectations showed no problems on
CERN Oracle instance

○ Want to do more scaling tests with MariaDB and PostgreSQL
● Single-node limit for rule evaluation

○ 8 GB of RAM can serve a single rule with max 500'000 files
○ This limitation is currently being addressed

● Automated deployment of nodes due to load
○ Datacenter issue
○ Currently requires operator to bring up new nodes
○ Want to automate this based on internal system performance metrics

11

Rucio dependences

● Python 2.7
○ Major parts already Python3 compatible

● Multiple database support
○ Object-relational mapper
○ SQLite, MySQL/MariaDB, PostgreSQL, Oracle

● File Transfer service
○ FTS3

12

Monitoring
Rucio

13

● All the DDM data
dumped to HDFS once
a day.

● All the traces kept in
Hadoop and ES

● Internal monitoring with
Grafana

API errors

API usage

Operations

WEB UI

14

API Usage in UC
Elasticsearch

15

Daemon activity

● Judge
● Automatix
● Conveyer
● Undertaker
● Hermes
● Kronos
● Reaper
● Necromancer
● Transmogrifier

- replication rule engine
- generates fake data and upload it on a RSE
- handles requests for data transfers
- obsoleting data identifiers with expired lifetime
- delivers messages to an asynchronous broker
- consumes tracer messages and updates replica last access time accordingly
- deletion of the expired data replicas
- tries to repair erroneous rules, by selecting different replica destinations
- is responsible to apply subscriptions and to generate replication rules

16

Understanding and optimizing FTS usage

Requires a lot of different data
sources:

● Rucio (detailed log on transactions)
● FTS (optimizer settings, reasons

behind decisions)
● Sites storage load (from summing up

all the traffic)
● Network (PerfSONAR)

For the first time we have all the
information and can do detailed analysis,
even simulations of how system would
behave with different settings.

We found a lot of space for improvement.

17

ATLAS Statistics

● ~1 billion active files
● ~2 billion archived files
● ~15M datasets/containers
● 840 storage endpoints
● 340 PB storage almost full
● 1.5 PB/day transferred, peaks up to 2.5 PB/day
● 2 PB/day deleted

XENON1T Statistics

● > 1.2M Files
● ~16k Datasets
● 9 storage endpoints
● 1887.5 TB of available storage
● 854.1 TB of available storage used
● Adding 1.3 TB per day, 200+ files per hour
● > 115 GB per hour transferred

18

AMS Statistics

● ~1M Files
● ~50k Datasets
● 9 storage endpoints
● ~2 PB of available storage
● ~1.5 PB of available storage used

19

Comparison with similar systems

● PhEDEx
● Globus

○ Can serve as alternative to FTS3 data transport but
entirely different set of management principles

● DynaFed, EOS Federation, Xroot Federation
○ Inter-cluster shared filesystem
○ Dynamic discovery of data
○ Can be used as RSEs

20

Rucio vocabulary

● DID (Data IDentifier)
○ File
○ Dataset
○ Container

● Scope
○ DID namespace partition

● RSE (Rucio Storage Element)
○ Topology description of a storage endpoint

● Rules
○ Declarative mapping of DIDs to RSEs

● Subscription
○ Automatic generation of rules 21

References

● Code https://github.com/rucio/rucio
● Web https://rucio.cern.ch/
● Docker https://hob.docker.com/r/rucio
● Support https://rucio.slack.com/
● Mail rucio-dev@cern.ch

22

