
Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

LArSoft vectorization tests

Guilherme Lima
LArSoft Coordination Meeting

August 28, 2017



G. LimaLArSoft Coord Meeting – 2017-12-052

Vectorization and LArSoft
● Goals

– Use vectorization to improve LArSoft 
performance

– Outline of this talk

* SIMD vectorization
* VecCore library

* Plans and status



G. LimaLArSoft Coord Meeting – 2017-12-053

SIMD Vectorization
● Traditional programs 

operate in scalar mode
● Modern hardware can 

use SIMD vectorization 
for instruction-level 
parallelism

● Modern compilers can 
auto-vectorize binaries 
in very special cases

– very simple loops 
with well-aligned 
arrays

● Developers can 
signifcantly improve 
the vectorization 
efciency using explicit 
vectorization techniques



G. LimaLArSoft Coord Meeting – 2017-12-054

SIMD Vectorization
●  At the lowest level, SIMD vectorization consists of

–  Loading data onto the vector registers (gather?)
–  Perform SIMD-vector arithmetic and logic operations
–  Save data from registers back into memory (scatter?)

→ gathers/scatters overhead can be minimized by redesigning the 
data structures

●  Minimize performance limitations (vectorization 
inefciencies)
– alignment issues
– data locality
– code locality (cache misses)
– branching (if/then/else, switch/case, early returns)
– etc.

●  Vectorization procedure easier using vectorization libraries



G. LimaLArSoft Coord Meeting – 2017-12-055

Vectorization libraries
● Vectorization libraries provide high level types to explicitly 

leverage SIMD vectorization without sacrifcing portability, 
readability or maintainability

● User code is written in terms of vectorized types and preprocessor 
macros provided by vectorization library

● Undesired issue: strong dependence on a third-party vectorization 
library
– mitigated using VecCore

(see next slides)

● Examples of libraries:
– M.Kretzman’s Vc library
– P.Karpinski’s 

Ume::SIMD library
– Agner Fog’s

Vector Class library
– several others 

User code

Vectorization library

Classes

Basic types

Vector types

Algorithms

Basic functions

Vector functions

Basic functions

Basic vector opsBase vector types

https://github.com/VcDevel/Vc
https://github.com/edanor/umesimd
http://www.agner.org/optimize/vectorclass/read.php?i=2


G. LimaLArSoft Coord Meeting – 2017-12-056

Introducing VecCore

● Developed within GeantV project

● Currently being integrated into ROOT

● Provides a uniform interface for SIMD vectorization

– Backends form a coherent set of types to be used together

– Arithmetics, comparisons, logical operators

– Vectorized math functions

– Masking/blending operations

– Gather/Scatter operations

– Support for multiple architectures without code duplication

● Support multiple backend implementations

– Scalar/CUDA

– Vc Library — https://github.com/VcDevel/Vc

– UME::SIMD — https://github.com/edanor/umesimd

● See these slides for more information about VecCore

https://github.com/VcDevel/Vc
https://github.com/edanor/umesimd
https://indico.cern.ch/event/570876/contributions/2347250/attachments/1359720/2057229/Portable-SIMD-and-the-VecCore-Library-2016-10-24.pdf


G. LimaLArSoft Coord Meeting – 2017-12-057

Introducing VecCore

generic
vector types

Intrinsics Vc libraryIntrinsics UME::SIMD
library

VecCore

generic
vector opers

vectorized
utilities

vectorized
geometry

GeantV

vectorized
algorithms

vectorized
data structs

LArSoft

vectorized
algorithms



G. LimaLArSoft Coord Meeting – 2017-12-058

VecCore details
● Source: VecGeom/VecCore/
● Generic vectorized types

– Real_v, Float_v, Double_v, Int_v, Int16_v, Int32_v, Int64_v, UInt_v, …, UInt64_v

→ relevant algorithms re-written in terms of these generic vectorized types
● Vectorized operations

– Arithmetics, MaskedAssign(), Blend(), IsFull(), IsAny(), isEmpty(), EarlyReturnsAllowed()
● Implementation backends

– Scalar, ScalarWrapper
– VcScalar, VcVector, VcSimdArray<N>
– UMESimd, UMESimdArray<N> 

● Implementation is selected at compilation time via CMake switches (if 
supported by the system)

● -DVC=[ON|of]   -DUMESIMD=[on|OFF]   -DCUDA=[on|OFF] 

● Note that carefully designed programs can use multiple backends at the 
same time (e.g. quadratic solver)

● Also supports GPU (through CUDA)



G. LimaLArSoft Coord Meeting – 2017-12-059

Quadratic solver: performance

Tests by Guilherme Amadio (CERN)



G. LimaLArSoft Coord Meeting – 2017-12-0510

Quadratic solver: performance

Tests by Guilherme Amadio (CERN)



G. LimaLArSoft Coord Meeting – 2017-12-0511

LArSoft vectorization plans
● Familiarity with LArSoft environment
● Introduce VecCore library into the build

– need some help for fast progress (GP)
● Identify LArSoft candidates for initial vectorization tests

– ES, GP: detector simulation and hit fnding
– SYJ: profling results

● Preliminary tests with localized changes
– Benchmarking tools?

● Consider redesigned data structures and adapted 
interfaces
– reduce gather/scatter overhead needed for vectorization
– our experience with GeantV shows that the gains from data 

and code locality can be quite signifcant


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

