
W e ie rstra ß -In stitu t fü r A n g e w a n d te  A n a ly s is  u n d  S to c h a stik

K. Gärtner
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Motivation

-Do detector development and device simulation fit well?

-Detector designs span very different requirements:
sensitivity, speed, spatial, time, energy resolution, noise, ...
different particles, environments,
special purpose or mass production

-detectors are not primarily miniaturization driven
-typical are large volumes and geometries from simple to
very complicated (large 3d grids are common)

-they can combine detection and amplification
-the classical equations are valid often

-Good chances to increase the common ground!
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Van Roosbroeck’s Equations

−∇ · ε∇w = C − n + p, (1)

∂n

∂t
+∇ · µnn∇φn = R, (2)

∂p

∂t
−∇ · µpp∇φp = R, (3)

R = r(x, n, p)(n2
i − np), r(x, n, p) > 0, Boltzmann statistics,

w electrostatic potential, ..., in S × Ω, S = (0, T ),
Ω ⊂ IRN, 2 ≤ N ≤ 3, a bounded polyhedral domain,
∂Ω = ΓD ∪ ΓN, ΓD closed, positive surface measure.
Boundary conditions:
hom. Neumann on insulating parts,
Dirichlet on Ohmic contacts,
and gates: hom./inhom. Neumann φ/w
(∂w/∂~ν+α(w−wΓ) = 0, ~ν outer normal vector). Generic situation
ξ1w + ξ2∂w/∂ν + ξ3 = 0, with ξi defined on Γ = ∂Ω, ξ1(x,w, . . . ) ≥ 0,
ξ2(x,w, . . . ) > 0.
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Introductory remarks

History:
-Van Roosbroeck 1950 (Nernst-Planck equations ...)
-first simulations: Scharfetter and Gummel 1969 (Allen and
Southwell 1955)

-Mock’s book 1983 made the problem popular (Gajewski and
Gröger, Jerome, Markowich,... analytic results)

-2d simulations in the early 80s (Bank, Rose and Fichtner,
Selberherr, ...)

-Missing was a discrete existence theory.

One goal of the talk:
it is essential to carry over qualitative properties of the analytic
problem to properly chosen discretizations.
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Related functionals

(w∗, n∗, p∗): thermal equilibrium solution of

−∇ · ε∇w∗ = f + e−w
∗ − ew∗ in Ω,

w∗ = w∗D on ΓD, ~n ·∇w∗+α(w∗−wΓ) = 0 on Γgate, n∗ = ew
∗
, p∗ = e−w

∗
.

Free energy:

F (w, n, p) =

∫
[n(ln

n

n∗
− 1) + n∗ + p(ln

p

p∗
− 1) + p∗] dΩ +

1

2
|||w − w∗|||2,

with |||h|||2 =
∫
ε|∇h|2 dΩ +

∫
αh2 dΓ.

Dissipation rate:

d(w, n, p) =

∫
[nµn|∇φn|2 + pµp|∇φp|2 + r(x, n, p)(np− 1) ln(np)] dΩ ≥ 0.
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Basic qualitative analytic results

1) thermodynamic equilibrium boundary conditions:
the free energy decays for any initial data along trajectories
(exponentially) to its equilibrium value,
the thermodynamic equilibrium is unique;

2) existence of bounded steady state solutions (smoothness as-
sumptions on data, models and domains, space dimensions),
uniqueness close to equilibrium, i.e., small applied voltages,
popular counter example uniqueness: thyristor);

3) 1d unipolar problem: unique, bounded steady state solution.
4) time dependent problems: existence and uniqueness for fi-
nite time intervals (avalanche blow up), in special cases global
in time (no ’easy’ bounds far from steady state, non trivial at-
tractor dimensions);

5) most of the results are valid for Fermi-Dirac statistics, too.

one source of literature:

http://www.wias-berlin.de/main/publications/wias-publ/index.cgi.en and cited one
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What’s known in the discrete case?

Suppose
– boundary conforming Delaunay grids,
– a finite volume scheme combined with
the classical Scharfetter-Gummel discretization in space and
the implicit Euler scheme in time.

For any h (spatial step size) and τ (time step size) holds:

property analytic discrete
dissipativity yes yes
exponential decay free energy yes yes (no rate)
existence of bounded steady state sol. yes yes
uniqueness for small applied voltages yes yes
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What’s known in the discrete case?

Byproduct of proofs:
possible averages for µ(x, n, p, |∇φi|), ... preserving these prop-
erties.

Other discretizations: smallness conditions!

A few are known explicitly:
Mock’s second order scheme, necessary condition for stability:
|wi − wnn(i)| < (3 +

√
3)UT , ∀i, nn(i), nn(i): next neighbors of i,

1V ≈ 40UT , hence 10 nodes per 1V applied voltage ...)
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Sketch of the discretization

Ω = ∪iΩi = ∪lEN
l , Ωi: subdomain, EN

l : simplex l of dimension N .

Definition 1A discretization by simplices EN
i is called a Delau-

nay grid if the balls defined by the N + 1 vertices of EN
i ∀ i do

not contain any vertex xk, xk ∈ EN
j , xk 6∈ EN

i .
Let the Delaunay criterion be fulfilled and let all smallest cir-
cum balls of all simplices EM

l ∈ ∂Ωi, M = 1, . . . , N − 1 contain
not any vertex xk ∈ Ωi, xk 6∈ EM

l , this mesh is called boundary
conforming Delaunay.
Definition 2Let Vi = {x ∈ IRN : ‖x− xi‖ < ‖x− xj‖,∀ vertices xj ∈
Ω}
and ∂Vi = V̄i \ Vi. Vi is the Voronoi volume of vertex i and ∂Vi is
the corresponding Voronoi surface.
The Voronoi volume element Vij of the vertex i with respect to
the simplex EN

j is the intersection of the simplex EN
j and the

Voronoi volume Vi of vertex i.
Its surface is denoted ∂Vij := ∂(Vi ∩ EN

j ).
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Sketch of the discretization

Delaunay grid:

Boundary conforming Delaunay grid:
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Sketch of the discretization
To start with:

−∇ · ε∇u = f,∫
Vij

−∇ · εl∇u dV = −εl
∫
∂Vij

∇u · dSk = −εl
∑
k(j)

∫
∂Vi,k(j)

∇u · dSk + BIVij

≈ −εl
∑
k

∂Vi,k(j)

|eik(j)|
(uk − ui) + BIVij = εl[γk(i)]G̃Nu|ENj + BIVij,

where BIVij denotes boundary integrals in case of boundary
conditions; (u(s)′)′ = 0 results in u′ = const, u(s2) − u(s1) =
(s2 − s1) ∗ const.
G̃N is a difference matrix, mapping from nodes to edges.

(G̃T G̃)ii > 0, (G̃T G̃)i>j < 0, and 1T G̃T = 0T . (4)

γk(i) =
∂Vi,k(i)

|eik(i)|
denotes the elements of a diagonal matrix of geometric weights
per simplex.

Pixel 2008 12



Sketch of the discretization

What is Vij?
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Sketch of the discretization

Functions are approximated by∫
Vij

fdV ≈ Vijf (xi), [V ]i =
∑
j

Vij,

where [·] denotes a diagonal matrix.
Summing over all vertices of the simplex j yields∑

Vij∈ENj

∫
Vij

−∇ · ε∇u dV ≈ εG̃T [γ]G̃u|ENj + BI.

The explicit form of the boundary integrals is given by

BIVij =
∑

i′ 6=i,i′∈ENj

∫
EN−1
i′ ∩∂Vij

−ε∇u·dS ≈
∑

i′ 6=i,i′∈ENj

|EN−1
i′ ∩∂Vij|

ε

ξ2i′
(ξ1i′

ui+ξ3i′
),

where EN−1
i′ denotes the N − 1 dimensional simplex opposite to

i′ ∈ EN
j , EN−1

i′ ∈ ∂Ω, and BI =
∑

i∈ENj
BIVij.
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Sketch of the discretization

A ’weak discrete maximum principle’ holds (u+ pos. part)

(u− u0)+T G̃T [γ]G̃u > 0,

if u > u0 at least for one xi ∈ Ω, as long as the Voronoi faces
related to each edge and subdomain fulfill∑

ENj 3eik,E
N
j ∈Ωl

∂Vik ≥ 0.

This is exactly the requirement fulfilled by a ’boundary con-
forming Delaunay mesh’ and has to be preserved for acceptable
averages ε̄ij in case of ε = ε(x, n, p, |∇φ|, ...).
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Sketch of the discretization

Rewriting the van Roosbroeck system

−∇ · ε∇w = C − n + p,

∂n

∂t
−∇ · niµnew∇e−φn = R,

∂p

∂t
−∇ · niµpe−w∇eφp = R,

application of the discretization scheme with (µ̄ew(x)(e−φ)′)′ = 0, w(x)
piecewise linear, u = e−φn, v = eφp yields
(sh(s) := sinh(s)/s, b(2s) = e−s/sh(s) = 2s/(e−2s − 1)):

GT [ε]Gw = [V ]g(C,n,p), g = C− n + p, n = [ew]u, p = [e−w]v, (5)

ASn(µn,w)e−φn = GT [µ̄ne
w̄/sh(G̃w/2)]Gu = [V ][r(x,n,p)](1− [v]u), (6)

ASp(µp,−w)eφp = GT [µ̄pe
−w̄/sh(G̃w/2)]Gv = [V ][r(x,n,p)](1− [u]v). (7)
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Sketch of the discretization

Theorem 1On any connected, boundary conforming Delaunay
mesh with n vertices, the problem (5, 6, 7) with positive Dirich-
let boundary measure has at least one solution. It fulfills the
bounds (u = v = e−w

+
, u = v = ew

+
, w+ sufficiently large with

max(w|ΓD)−min(w|ΓD) ≤ w+ <∞)

u ≤ u ≤ u, (8)

v ≤ v ≤ v, (9)

and the bounds for w

ẁ := min(w|ΓD, w̌) ≤ w0
i ≤ max(w|ΓD, ŵ) =: ẃ, (10)

yield finally

w = min(w|ΓD, ln((Č +
√
Č2 + 4)/2)− w+) ≤ w, (11)

w ≤ max(w|ΓD, ln((Ĉ +
√
Ĉ2 + 4)/2) + w+) = w. (12)

.
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Sketch of the discretization

Used are: monotonicity, the discrete maximum principle, the
Gummel map, Brouwer’s fixed point theorem.

Dissipativity and uniqueness for small applied voltages follow
(details to app. in SIAM SISC).

One knows a lot of related properties of the discrete system:

- transformation by positive diagonal matrices between the
different types of variables,
- similarity to symmetric pos. def. (spd) matrices,
- properties of parts of the discrete Jacobian,

Layman’s summary: negative densities – never again!

but only up to rounding ...
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Practical road map to IV curves

a)Grid generation;

b)Discretization with proven properties;

c) Implicit, dissipative time discretization,
time step control based on free energy, dissipation rate,
source integrals ...;

d)Newton’s method and implicit damping;

e)solution of the linear systems;

If b), c), d) are solved, a) and e) are the remaining challenges!
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Remaining challenges

Any boundary conforming Delaunay grid is a starting point –
the goal is:
the best anisotropic (in the Euclidian metric),
adapted boundary conforming Delaunay grid!
This is a research topic in its own.
Constructions for simple cases are possible and used.

Linear systems: due to the huge condition numbers direct and
iterative methods are used in combination.
Complexity estimates direct methods (spd case, d space dimension,

n unknowns per space dimension, grids of size N = nd):

Operations for d = 2 d = 3

Factorization N
3
2 N 2

Solution Nlog(N) N
4
3

This causes a practical limit at the order of 106 nodes, 128GB!

Dream: ≈ 107 nodes, mainly by algorithmic improvements.
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Main steps to get things going:

a) construction of a 2d Delaunay grid

b) extension (transl., rotation) to 3d with boundary, material
assignment

c) doping profiles (analytic, 1d, 2d DIOS interpolation)

d) description source distribution (MC results), charge integrals

e) material, contact assignment, time functions

...

f) IV, I(t), V(t), charge integrals, graphics
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pin Diode, 3D

10o sector,
ToSCA grid in
the r − z− plane,
doping:
top N+, bottom P+,
volume N = 2 · 1012/cm3,
top 200V,
depletion 120V,
R = 75µm, Z = 300µm,
176 161 nodes,
866 710 tetrahedrons,
1.6M e-h pairs in the
full cylinder
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Time scales cloud movement

’deposition’ time (4ps), ’no’ changes in the electrostatic pot.
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Time scales cloud movement

local dd time (100ps), ’dipole moment’ developed, pot. flattened
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Time scales cloud movement

drift time (1ns), particle current in the volume
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Time scales cloud movement

cloud separation time 0...50ns, pair number and shape dependent
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Charge cloud simulation cooperation

Very first
computational
results (WIAS)
and measurements
(lines, Inst. für
Experimentalphysik,
Uni. Hamburg)
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Charge cloud simulation cooperation

Idea and goals:

– select a few specific detector design problems with impact
(here the huge charge clouds expected at XFEL),
– set up experiments to mimic the future situation (necessary
anyway),
– push the simulation limits and compare with the measure-
ments
in a joint effort of detector and applied math people.

This cooperation started including XFEL, HLL Munich, Uni
Hamburg, RAL, WIAS a few months ago.

The expected result is:
a simulation code for and influenced by the detector community.
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CCD
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CCD

Minimal configuration:
total 3 registers
l. blue: channel stop
red storage regions
X = 75µm, Y = 75µm,
Z = 150µm,
958 399 nodes,
5 567 544 tetrahedrons,
BACK -50V, R2=-10V,
R1=R3=R4= -15 / -18V,
MOS1=MOS2=MOS3=5V
Data: HLL Munich

Doping in thermal voltages
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CCD

Steps in the computation:

- Depletion,

- reduce n artificially (multiply by 10−7, time integration
0.01as..1ns), 5.8 electrons are still in the domain;

- start a charge cloud close to BACK beneath R2 and let it
distribute;

- shift the electrons: R2→ R3→ R2;

- check the charge integrals in the lower 99.5% of the domain.
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CCD

Overflow of electrons (left), weakest point potential barrier
(right, graphics gltools)
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CCD

Total charge balance
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Summary

Semiconductor sensor design + advances in device simulation fit nicely.

Thank you for your attention

and HLL Munich for many years of fruitful cooperation.
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Van Roosbroeck’s Equations
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Van Roosbroeck’s Equations
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Van Roosbroeck’s Equations

The physical meaning of the quantities is :

• φn = w − lnn - quasi-Fermi potential n,
• φp = w + ln p - quasi-Fermi potential p,
• n = ew−φn - electron density,
• p = eφp−w - hole density,
• w - electrostatic potential,
• ε - dielectric permittivity,
• C - density of impurities,
• R - recombination / generation rate R = r(x, n, p)(1−np),
• µn,p - carrier mobilities µn,p > 0, Einstein relation.

Scaling of the potentials: UT , ’thermal voltage’, 1V ≈ 40UT .
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Van Roosbroeck’s Equations

Rewriting yields:

∂n

∂t
−∇ · µn(∇n− n∇w) = R, (13)

∂p

∂t
−∇ · µp(∇p + p∇w) = R, (14)

or
∂n

∂t
−∇ · µnew∇e−φn = R, (15)

∂p

∂t
−∇ · µpe−w∇eφp = R, (16)

(e−φn, eφp Slotboom variables).
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