CMS Luminosity Monitor using CVD Diamond Pixel Detectors

- Overview
- Technology of Diamond Detectors
- CMS Pixel Luminosity Telescope (PLT)
 - Design
 - Construction
 - Readout DAQ
 - Simulations and Performance
 - Status

R. Stone Rutgers University

Pixel 2008

CMS Pixel Luminosity Telescope (PLT)

Measure relative luminosity bunch-by-bunch

- Small angle (~1°) pointing telescopes
- Total length 9 cm, located at r ~ 5 cm, z +- 1.7 m
- Three planes of single-crystal CVD diamond sensors (4 mm x 4 mm) active area
- Diamond pixels bump-bonded to CMS pixel ROC
- Eight telescopes per side
- Form 3-fold coincidence from ROC fast 'hit' signal
- Rutgers, Princeton, UC Davis, CERN, Vanderbilt, Tennessee, DESY-Zeuthen, Vienna

Count 3-fold coincidences for each bunch crossing

A Simple Diamond Detector

charged particle electrodes CVD diamond bias voltage

- No reverse-bias PN junction: Diamond is an extremely good insulator
- Charge deposited: 36 e⁻ h⁺ pairs / micron thickness
- Signal collected may be less due to charge traps

Advantages/Disadvantages of CVD Diamond

- High mobility: fast signal collection (~1ns for 500 microns)
- High resistivity: insignificant dark current → lower parallel noise
- Low dielectric constant → lower series noise
- Chemically inert:
- Reusable: solid electrodes, then remove metal, then pixel electrodes
- High thermal conductivity:
- No need for extensive cooling
- High radiation tolerance: survives > 2 x 10¹⁵ protons/cm²
- Smaller signal: < ½ of silicon
- Relatively new material:
 - few manufacturers can produce detector quality diamond
 - higher cost than silicon

Comparison of Poly vs. Single crystal Diamond (500 µm thick)

Comparison of Poly vs. Single-crystalline Diamond (500 μm thick) (2)

Signal vs. Applied Field

Comparison of Single vs. Poly-crystalline Diamond (3)

- Poly Crystal:
 - 6 inch wafers: suitable for large scale pixel module production
 - Less expensive than single crystal diamond (but more than Si)
 - Stable particle flux measurement (within large B field)
- Single Crystal:
 - 1 cm² largest produced so far, but 5mm x 5mm a production item
 - Full charge collection at less than 1/4 the electric field needed for poly
 - Charge distribution much narrower than poly, ~half that of Si
 - Excellent signal separation from noise for threshold setting

Both show decrease in dark current after irradiation

Structure of a Diamond Pixel Detector

- Diamond thickness: ~500 microns
- Diamond metallization: Ti-W, 1 micron thick
- Bump bond: Indium, 15 micron diameter
- Note: no guard rings needed (diamond is near-perfect insulator!)

Indium Bump Bonding Process

 Current technique (based on process developed at UCD) done at PRISM nano-fabrication facility at Princeton University

Grow Indium bumps on both Diamond and ROC

- Apply thick (15 μm) photoresist
- Wipe off edge bead of photoresist
- Expose and develop 15 μm diameter holes for In bumps
- Evaporate 10 μm Indium
- Liftoff photoresist
- Flip chip bonding, w/o reflow

PRISM Facility

PRISM photolithography facilities

Edwards E306A Thermal Evaporator at PRISM

Karl Suss MA-6 6" mask aligner at PRISM

Research Associates M8A at PRISM

Indium bumps on diamond pixel pattern

100μm x 150μm pixel pitch (CMS)

Diamond Bump Bonded to ROC

4 x 4 mm²
Backplane
Electrode

Covering pixels

ROC PSI 46 v2

8 x 8 mm² sCVD diamond

Nominal CMS Pixel Readout Mode

Fast Hit Output

proportional to number of columns having >=1 pixel hit

Note: designed years ago to provide input to a hardware Level 1 trigger processor, but not currently in use in CMS pixel system

Pixel Diagnostic Readout Mode

<u>Diamond+ROC</u> self-trigger on

- stopping electrons (mostly)
- (or noise)

Pixel Diagnostic Readout Mode

- Spectrum from stopping betas:
 - Some deposit many times min I
 - Some deposit less than min I

 Likely to have charge on >1 pixel due to multiple scattering

 Scope trace of Pixel A out: Stopping beta <u>signature</u> of working detector

Pixel Diagnostic Readout Mode

Analyzed pixel hit multiplicity ->

- 90Sr self triggering benefits:
 - Pixel to pixel uniformity of gain and efficiency
 - Bump yield
 - Single detector production testing

- Still need Min I (beamtest) for:
 - Overall detector hit efficiency
 - Pulse height distribution
 - Gain calibration
 - Hit spatial resolution

Pixel Detector Uniformity

Preliminary

Box proportional to number of hits Number of pixels vs. number of total hits/pixel

~ <1% bad pixels

Dual Readout of PLT

Scattering Beam halo

Unique dual readout capability:

- 1) fast (bunch-by bunch) hit information
- 2) full pixel tracking information

1) Luminosity mode:

Fast output level (every 25ns bunch crossing)

- 0, 1, 2, 3, ... double column hits
- individual pixel thresholds adjustable
- individual pixels can be masked

2) Tracking mode:

Full pixel readout (~ 1kHz)

- pixel address and pulse height of each hit
- diagnostic of fast out signal
- determination of track origin
- determination of IP location

CMS pixel chip has "fast" multiplicity counting built in

Diamond pixel active area

4 mm

4 mm

PLT Data Flow

Location of Telescopes

PLT and BCM Carriage

carriage slides on rails inside of the pixel service cylinders

carriage already exists (houses BCM)

PLT Performance Capabilities

numbers for $\mathcal{L} = 10^{34} \text{ cm}^{-2} \cdot \text{s}^{-1}$

- 1.6 tracks per bunch crossing
 - Pythia simulation
- Relative bunch-by-bunch luminosity
 - 1% measurement each second
- Interaction point centroid relative precision
 - 100 μm radially each second
 - 2 mm longitudinally each second

scales as (time)-1/2

- Beam in abort gap identified
 - crucial for CMS protection
- Beam halo measured
 - horizontal tracks

Acceptance Uniformity

Acceptance Uniformity

Only 4 telescope per side?

The case when there are only four telescopes per side

Acceptance falls 10% in 5 mm

No region where the acceptance is radially flat

⇒ Need eight telescopes per side

IP Location

- Use pixel information to extrapolate tracks back to IP.
- digital hit resolution (little or no charge sharing)
- linearly extrapolate tracks to z = 0
- smearing due to curvature of tracks

rms = 2.4 mm

radial resolution longitudinal resolution beam position at ze0 (r) beam position at xe0 (2) no beam spread rms = 1.8 mmrms = 52 mmbearin position at te0 (r) beam position at xe0 (t) beam spread $\sigma = 5.2 \text{ cm}$

rms = 75 mm

slide 27

IP Centroid Precision

Resolution dominated by beam spread

Assume 1 kHz of pixel information

```
\Rightarrow 100 tracks / second / telescope
```

- Use 4 telescopes to measure x or y position
- Use all 16 telescopes to measure z position
- radial rms = 2.4 mm
- longitudinal rms = 75 mm

Precision on relative centroid position in one lumi section (93 s)

radially: 12 μ m

longitudinally: 200 μ m

PLT Status and Plans

Goal to have ~ 1/4 PLT installed for 2009 run

Begin construction by Oct, 2008

Current status:

- mechanical support structure installed (used for BCM also)
- cabling installed
- necessary ROCs plus aux. chips allocated
- power supply system purchased (same as pixel)
- conceptual design of DAQ (based on modified pixel VME module)
- conceptual plan for data logging and publishing (modeled on HF)
- first 12 of 48 diamond sensors in hand

Milestones: Oct '08:

- Begin assembly of first 12 detector planes

March '09:

- Finish assembly of first 4 telescopes
- Complete test beam studies of 2 pixel telescopes
- Finish system tests and install in CMS → Need Help

June '09:

- Results analyzed from first 12 telescope planes
- Order remaining diamond sensors
- Begin production of remaining telescope planes

Mar '10:

- Delivery of completed 16 telescope PLT to CERN

PLT Summary

Luminosity monitor based on diamond pixel telescopes

- Unique hybrid (fast coincidence, pixel) readout
 - → most versatile luminosity monitor ever for hadron collider
- Precision bunch-to-bunch relative luminosity
- Precision measurement of IP location
- Measurement of beam hot spots, beam halo, and abort gap
- Stable reference for monitoring of CMS subdetectors and trigger
- Based largely on existing components: Modest cost
- Major milestone in development of radiation-hard detectors for SLHC and other high intensity colliders

Long term test of diamond pixel detectors in high radiation environment under actual experimental conditions

Backup slides

Rates

Pythia simulation

 $0.0048 \; \mathrm{tracks} \; / \; pp \; \mathrm{interaction} \; / \; \mathrm{telescope}$

Taking 21 interactions per bunch crossing at $L=10^{34}~{\rm cm^{-2} \cdot s^{-1}}$

 $\Rightarrow~1.6~\text{tracks}$ in PLT / bunch crossing

18,000 tracks per second for each of the 2835 filled orbit bunches

 \Rightarrow 0.75% precision in 1 second

More than sufficient

Accidentals

Accidental fraction vs. interactions per bunch crossing

- about 4% at full luminosity
- correctable to few percent of itself using full pixel data
- can reduce active area if necessary

systematic error less than $1\%\,$

Overlaps

Overlap fraction vs. interactions per bunch crossing

- about 8% at full luminosity (digital readout)
- about 1.5% at full luminosity (analog readout)
- correctable to few percent of itself using full pixel data

systematic error less than 1%