The DEPFET prototype for the ILC: test beam measurements

Lars Reuen for the DEPFET collaboration

Content

- DEPFET prototype system
- Test beam setup & DAQ
- Measurement program
- EUDET analysis software
- Preliminary results
- Issues & Summary

All results are preliminary

The DEPFET prototype system for the ILC

- matrix board
 - 64x128 pixel DEPFET matrix
 - 2x SWITCHER steering ASICs
 - 1x CURO read out ASIC
- Read out board:
 - XILINX S3A FPGA
 - 128k RAM (16 frames)
 - 2x 16 bit ADCs
 - USB read out
- Voltage control add-on board
 - Over voltage protection
 - Linear regulator (voltage supply)

The ASICS & DEFET Matrix

- Several DEPFET pixel types with different geometries
- Switch: steering ASICS
 - Switches up to 24 V
 - Gate Switcher
 - Clear Switcher
- CURO: read out ASIC
 - Current read out
 - Pedestal correction
- New ASIC generation
 - Produced and under test
 - Read out: current ADC
 - Switching: rad. hard tech.

Test Beam Setup

- 4 DEPFET telescope planes
 - 24 x 33 µm² sized standard type common clear gate pixel
- DEPFET matrix size trigger
 - Higher track efficiency
- 6 X-Y motor stages for optimal alignment (track efficiency)

- 2 DEPFET DUT planes
 - 24 x 24 µm² sized standard type common clear gate pixel
 - 24 x24 µm² sized pixel with four quadrants → new pixel types

Test Beam telescope DAQ

Windows based DAQ ported to Linux Server-client, network based Collector Very flexible architecture task Can include several read out PCs Each plane has its own read out task Data storage One collector task → event building **EUDET DAQ compatible** Read out tasks Telescope & **DUT** planes

Beam test operation and program

- 2 weeks@ PS: July 2008:
 - Checking: new DAQ, new mechanics etc...
 - Beam was divergent → alignment not possible
- 4 weeks@ SPS: August 2008
 - Shared beam time with other silicon users (parasitic running)
 - Thanks to EUDET & MAPS
- Three weeks of successful data taking
 - almost 20 million events
 - 3.5 TB of data
 - Analysis takes a while

Beam test program

- High statistics for in-pixel studies → 12M events
- Angular scans
- Clear Parameter Scans
- Depletion voltage scan
- Energy scan
- Matrix edge voltage

High Statistics	11941
Angular Scans	4134
CCCG scan	1815
Backplane scan	909
Rest	389
Energy Scan	222
V_Edge scan	128

EUDET project and analysis package

- EUDET is a EU sponsored project for detector development
- EUDET telescope and analysis package
- DEPFET is part of the EUDTE project as demonstrator DUT with complete DAQ integration
 - Successfully done in this CERN test beam period
- Moving from self made to EUDET analysis package
 - More momentum and support, longer lifetime
 - Detector (DEPFET) specific modifications necessary, e.g. Common

Pedestals and Noise

- Telescope plane
 - Uniform pedestals
 - Uniform noise:~13 ADUs ~ 330e-

DUT

- Different pixel layouts
- Pedestals different

Noise uniform

Corrected pixel signals (no clustering)

 Different pixel sizes → Different charge collected per pixel (after pedestal and common mode correction)

Cluster Properties

- Cluster Signals looking good
- One telescope performing less well
 - → wrong operating voltages

- S/N* ~ 100 150
- * except one plane

Residuals Telescope Planes

Residuals DUT planes

- Residuals in X between 1.79 μm and 2.43 μm
- Residuals in Y between 1.76 μm and 3.07 μm
- That includes tracking error, multiple scattering, intrinsic and telescope resolution
- Position reconstruction method (η for x and y separate) can be improved and is under investigation → look-up table, etc.
- Tracking: no weighting by S/N
- Telescope resolution@DUT planes around one micron

Energy Scan

- Just a first glance at the data
- Tracking issues
- Extrapolation to ∞ energies
- Higher energies
 - → less multiple scattering
 - → smaller residuals
- Tendency is there

$$\sigma_{MS}^2 \sim 1/E_{tot}^2$$

Anglar Scan

Expected Clustersize:

$$n = 1 + \tan(\phi) \bullet \frac{sensor_thickness}{pixel_pitch}$$

$$=1+\tan(\phi)\bullet\frac{450\mu m}{24\mu m}$$

~ real cluster size

Current Issues

- Test Beam Setup
 - Big silicon strip sensor for alignment in beam
 - Designated power supply

- Analysis just started
- DEPFET specific modifications of EUDET analysis software package

Summary

- Successfully run a high energy (120 GeV) test beam at SPS/CERN with 20 million events taken
- 4 telescope planes and 2 DUTs → 5 tracking planes
- New setup with improved track efficiency
- Completed measurement program
 - High statistics (14M events)
 - Energy scan (→ multiple scattering)
 - Angular scans
 - New DEPFET generation
 - Studied influence of operation voltage parameters
- Full integration into EUDET DAQ in a parallel setup
- Making use of the EUDET analysis package

