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• Introduction to me, this talk, and TDAQ

• Start off with some context:  what is the trigger & data acquisition 
challenge?

• Spend some time with a toy example

• Translate that example into the LHC ecosystem

• Look to the future
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B E F O R E  W E  G E T  S TA R T E D

• Will I learn how (insert experiment here) specifically triggers on (insert 
physics process here)?  

• No, my goal is to give you enough of a framework for understanding TDAQ generally 
such that you can apply your knowledge to specific situations 

• Will I learn basic electronics?  

• Not really.  We’ll cover a few important concepts, but take a class at your institution or 
attend the ISOTDAQ or EDIT schools for more information 

• These lectures are inspired by Andrea Negri, Wainer Vandelli, and Roberto 
Ferrari’s lectures at ISOTDAQ and CERN as well as Wesley Smith’s 
previous HCPSS lectures. 

• These are a little ATLAS-heavy, but the concepts apply generally so please 
forgive me!
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https://isotdaq.web.cern.ch/isotdaq/isotdaq/Home.html
http://conferences.fnal.gov/edit/
https://indico.cern.ch/event/557251/contributions/2245643/attachments/1310079/2143410/isotdaq17.Negri.DAQ-HW.pdf
https://indico.cern.ch/event/387982/
https://indico.cern.ch/event/716515/
https://indico.cern.ch/event/716515/
https://indico.fnal.gov/event/11505/material/0/?sessionId=16
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• Trigger & Data Acquisition comprise the systems for deciding which data to 
record (Trigger) and getting it off the detectors to storage for analysis (DAQ) 

Fast, custom 
electronics: 
FPGAs, ASICs

Computing 
power: CPUs/
GPUs

Algorithms

Networks

People! Software & hardware; 
dynamic control
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•  Number of channels: ~100M (ATLAS/CMS); (1M LHCb) 

• Event size: 1 Mb (ATLAS/CMS) ; 100 kB (LHCb)

• Need to get that data to disk for analysis! 

• Can’t write all of it — 150000 PB/year!  

• There are a number of bottlenecks to contend with: 

• Local, on detector data storage — how much data can I store on my detector before shipping it out? 

• How fast can I get data off my detector — what are my readout bandwidth limitations? 

• How much data can I write to storage — can my output bandwidth, disk space and computing resources 
cope?
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R E C O R D I N G  T H E  D ATA :  M U LT I - S T E P  
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S T E P  1 :  Q U I C K  A N D  D I R T Y
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100kHz
3-5 μs
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S T E P  3 :  T H E  F U L L  P I C T U R E  ( A L M O S T )
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O(1kHz)
~100ms



L E T ’ S  S TA R T  W I T H  A N  
E X A M P L E

D R A W S  H E AV I LY  F R O M  E X A M P L E  B Y  A N D R E A  N E G R I  

https://indico.cern.ch/event/643308/contributions/2610520/attachments/1467722/2536718/isotdaq18.Negri.DaqIntro.pdf
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✴ How is an event defined? 
✴ Fixed frequency ➣ 

event = one “read” of 
the data 

✴ What is the processing 
time per event? 
✴ τ =  τ(ADC) + τ(proc) 

+ τ(storage) 

✴ What is the maximum 
sustainable readout rate? 
✴ R = 1/τ  
✴ If τ = 1ms ; R = 1kHz
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B R I E F  PA U S E  T O  R E G R O U P

• For stochastic processes, our system needs to be able to: 

• Determine if there is an “event” (trigger) 

• Process and store the data from the event (acquisition) 

• Have a feedback mechanism so that the trigger knows if the data 
processing pipeline is free to process a new event
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• We want to know our average data acquisition (DAQ) rate, ν

• What is the probability that our system is busy in terms of τ and ν? 

• P[busy] =  τν ;  P[free] = 1- τν

• Therefore, our DAQ rate is ν = f P[free] = f (1 - τν)  ;  ν = f/(1+fτ)
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R AT E S  A N D  E F F I C I E N C I E S

• What can we say about our DAQ rate 
relative to our physics process rate? 

• It is always smaller! ν = f/(1+fτ)  <  f 

• What can we say about our efficiency 
to record events? 

•  𝜺 = ν/f   < 1 

• So if f = 1/τ = 1 kHz ; then ν =  500 Hz ; 
𝜺 = 50% 

• How can we maximize our efficiency?  

• We need fτ << 1  

• For 𝜺 = 99% and f = 1 kHz  we need             
τ  = 0.01 ms!
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D E - R A N D O M I Z I N G
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D I S K

✴ Busy is now defined by if 
the buffer is full or not. 

✴ Processor pulls data from 
the buffer at fixed rate, 
separating the event 
receiving and data 
processing steps

D E L AY

sta
rt

Busy?

Buffer/ 
Pipeline



Q U E U E I N G  T H E O R Y

• Efficiency as a function of the 
ratio of the event processing 
time (τ) to average event 
arrival time (λ) 

• Qualitatively describe the 
system for: 

• 𝜌 >1  : overloaded system — 

loose efficiency rapidly 

• 𝜌 ~ 1 : Efficiency high and 

dependent  on length of queue 

• 𝜌 << 1: system efficient but over 

designed
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• 𝜌 >1  : overloaded system — 

loose efficiency rapidly 

• 𝜌 ~ 1 : Efficiency high and 

dependent  on length of queue 

• 𝜌 << 1: system efficient but over 

designed
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G E N E R A L I Z I N G  T O  M U LT I - C H A N N E L  
S Y S T E M

!23
Andrea Negri

https://indico.cern.ch/event/643308/contributions/2610520/attachments/1467722/2536718/isotdaq18.Negri.DaqIntro.pdf
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T H AT  E X A M P L E  W A S  C U T E ,  B U T  W H AT  
A B O U T  T H E  L H C ?  

• What are the similarities & differences?

• Fixed frequency of LHC collisions means you don’t need to have continuous 
readout

• But events are still random —> de-randomization is needed!

• Remainder of today and tomorrow’s lectures are going to explain 
how these basic concepts are applied to the LHC trigger & data 
acquisition problem now and in the the future 

!24



T H E  R E S T  O F  T H E  L E C T U R E S

• Overview of the current ATLAS & CMS TDAQ architecture 

• ATLAS Level 1 Trigger & DAQ 

• CMS High Level Trigger & DAQ 

• How triggers are constructed for the LHC environment 

• The art of menu building 

• Creative solutions to challenging conditions 

• Looking forward to the upgrades 

• LHCb: The trigger-less future? 

• Contending with 200 simultaneous collisions

!25

Today

Tomorrow



T D A Q :  C M S  &  AT L A S  
S T Y L E



AT L A S  R U N  I I  T D A Q  S Y S T E M
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http://iopscience.iop.org/article/10.1088/1748-0221/3/08/P08002/pdf
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Fig. Ref

X

http://iopscience.iop.org/article/10.1088/1748-0221/3/08/P08002/pdf


T O P O L O G I C A L  T R I G G E R S

!30

Fig. Ref

Fig. Ref

https://cdsweb.cern.ch/record/2305791/files/ATL-DAQ-SLIDE-2018-102.pdf
https://cds.cern.ch/record/2197803/files/ATL-DAQ-SLIDE-2016-383.pdf


AT L A S  L E V E L  1  T R I G G E R  S Y S T E M
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Fig. Ref

http://iopscience.iop.org/article/10.1088/1748-0221/3/08/P08002/pdf
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• Central Trigger Processor (CTP) and the Trigger 
Timing and Control (TTC) form the brains of the 
Level-1 Trigger:

• Takes primitives from L1Calo/L1Muon/L1Topo and 
determines trigger decisions

• Produces Level 1 Accept (L1A), a unique event 
identifier which is used, along with Bunch Crossing ID, 
to synchronize pushed data to the rest of the system

• Provides a GPS-based UTC time stamp that is 
included in the trigger information that is sent to the 
readout system

• Controls detector BUSY

• All within 100ns
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T I M I N G  I S  E V E R Y T H I N G

!33

http://inspirehep.net/record/1234410?ln=en1 BC
2 BC

3 BC



AT L A S  D E A D T I M E

• Simple dead-time veto: 

• No new L1A after fixed number 
of BC 

• Leaky-bucket Deadtime 
Algorithm: 

• Bucket leaks at rate R 

• Contents increase by X at each 
L1A until full, then BUSY is 
asserted 

• Allows system to maintain 
high efficiency for data taking 
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Fig. Ref

https://cds.cern.ch/record/1300249/files/ATL-DAQ-PROC-2010-036.pdf
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S U M M A R Y

• TDAQ is the system which 
allows us to take data off 
our detectors for analysis  

• Efficiency of data taking is 
controlled through 
stochastic input rate, DAQ 
processing rate, and ability 
to buffer events to process 

• We’ll learn more about how 
these are implemented and 
what people are thinking 
about the future tomorrow!
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