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BEFORE WE GET STARTED

o Will I learn how (insert experiment here) specifically triggers on (insert
physics process here)?

* No, my goal is to give you enough of a framework for understanding TDAQ generally
such that you can apply your knowledge to specific situations

e \Will | learn basic electronics?

 Not really. We'll cover a few important concepts, but take a class at your institution or
attend the ISOTDAQ or EDIT schools for more information

 These lectures are inspired by Andrea Negri, Wainer Vandelli, and Roberto
Ferrari's lectures at ISOTDAQ and CERN as well as Wesley Smith’s
orevious HCPSS lectures.

 These are a little ATLAS-heavy, but the concepts apply generally so please
forgive me!


https://isotdaq.web.cern.ch/isotdaq/isotdaq/Home.html
http://conferences.fnal.gov/edit/
https://indico.cern.ch/event/557251/contributions/2245643/attachments/1310079/2143410/isotdaq17.Negri.DAQ-HW.pdf
https://indico.cern.ch/event/387982/
https://indico.cern.ch/event/716515/
https://indico.cern.ch/event/716515/
https://indico.fnal.gov/event/11505/material/0/?sessionId=16

TDAQ COMPONENTS

e Trigger & Data Acquisition comprise the systems for deciding which data to
record (Trigger) and getting it off the detectors to storage for analysis (DAQ)
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THE CHALLENGE

e A lot of things are going on at
the same time!

e Average 55 simultaneous pp
collisions in 2018 (LHC design
was 23)

e Collisions every ~25ns

e Come in bunches and trains
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e Each collision produces a lot of data

M5

Number of channels: ~100M (ATLAS/CMS); (1M LHCb)

Event size: 1 Mb (ATLAS/CMS) ; 100 kB (LHCb)
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THE CHALLENGE: PART 3

Bendisg Flane

Muon Detector

pcar HCAL
RICH?

e Each collision produces a lot of data
e Number of channels: ~100M (ATLAS/CMS): (1M LHCDb)
e Eventsize: 1 Mb (ATLAS/CMS) ; 100 kB (LHCb)
e Need to get that data to disk for analysis!
e Can't write all of it — 150000 PB/year!
e There are a number of bottlenecks to contend with:
e |ocal, on detector data storage — how much data can | store on my detector before shipping it out?

* How fast can | get data off my detector — what are my readout bandwidth limitations?

* How much data can | write to storage — can my output bandwidth, disk space and computing resources

cope?
P 8



RECORDING THE DATA: MULTI-STEP
APPROACH




STEP 1: QUICK AND DIRTY




STEP 2: SELECTIVE SIGHT
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LET'S START WITH AN
EXAMPLE

DRAWS HEAVILY FROM EXAMPLE BY ANDREA NEGRI



https://indico.cern.ch/event/643308/contributions/2610520/attachments/1467722/2536718/isotdaq18.Negri.DaqIntro.pdf
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How is an event defined?

* Fixed frequency >
event = one “read” of
the data

What is the processing

time per event?

x T= T(ADC) + T(proc)
+ T(storage)

What is the maximum
sustainable readout rate?
¥ R=1/T

¥ IfT=1ms:R=1kHz



* How is an event defined?

<

STOCHASTIC PROCESSING

Q/O PROCESSOR
Interrupt

* What is the processing
time per event?

* What it our average
ifetime for our process,
A =T =1Tms? First, sketch
the distribution of
possible events times.

15
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STOCHASTIC PROCESSING

* How is an event defined?
* Event = decay =
signal passing
discriminator

threshold

: !

X0 - * What is the processing
I .
time per event?
PROCESSOR ’ —
Q/O nterrupt * Still T = T(ADC) +
- T(proc) + T(storage)

l * What it our average

~— ifetime for our process,
DISK

A =T =1ms? First, sketch
the distribution of
15 possible events times.



pdf

1.0

0.8

0.6

0.4

0.2

0.0
0

—_— A=1 ms

Decay rate f=1kHz
for lifetime of Tms

1 1

3 4 5
Time between events (ms)

16




pdf

1.0

0.8 }

0.6 }

0.4

0.2

0.0
0

—_— A=1 ms

Decay rate f=1kHz
for lifetime of Tms

1 2 3 4 5 6 7
Time between events (ms)

\

What happens to
these events?




1.0

0.8 }

Decay rate f=1kHz
for lifetime of Tms

0.6}F -

pdf

0.4

0.2F NG

0.0
0

1 2 3 4 5 6 7 8
Time between events (ms)

\ /

Will keep hitting interrupt un
processing system can tell t
trigger that it's BUSY

16

eSS

ALS

What happens to
these events?

&




1.0

0.8 }

Decay rate f=1kHz
for lifetime of Tms

0.6}F -

pdf

0.4

0.2F NG

0.0
0

1 2 3 4 5 6 7 8
Time between events (ms)

\ /

Will keep hitting interrupt un
processing system can tell t
trigger that it's BUSY

16

What happens to
these events?




TO REGROUP

BRIEF PAUS

e [For stochastic processes, our system needs to be able to:
e Determine if there is an “event” (trigger)
e Process and store the data from the event (acquisition)

e Have a feedback mechanism so that the trigger knows if the data
processing pipeline is free to process a new event

17



SO HOW FAST CAN WE PROCESS
EVENTS?
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SO HOW FAST CAN WE PROCESS
EVENTS?

e Qur average eventrate is f
e Our dead time (system processing time) is T
e \We want to know our average data acquisition (DAQ) rate, v

e \What is the probability that our system is busy in terms of T and v?

e Plbusy] = Tv; Plfree] =1-Tv

e Therefore, our DAQ rateisv =1 P[free]=1(1-1V) ; v =1/(1+11)
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RATES AND

~FICIENCIES

e \What can we say about our DAQ rate
relative to our physics process rate?

e \What can we say about our efficiency
to record events?

e Soiff=1/T=1kHz:thenv= 500Hz:
e = 50%

e How can we maximize our efficiency?
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to record events? ‘
gO.G
e e£=V/f <1 g
. _ Nsaved . 1
e Soiff=1/T=1kHz:thenv = 500Hz: 0.4 G_N =7
o tot
e = 50% ‘
0.2
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e \We need fT << 1

e Fore=99% and f=1kHz we need
T =0.01 ms!
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HOW CAN WE MAKE OUR SYSTEM
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HOW CAN WE MAKE OUR SYSTEM
MORE EFFICIENT??

Inter-arrival time
distribution

e \What if we were able to make

the system more deterministic ms
and less dependent on the A (ms) ;
arrival time or our signals? f (Hz)
e Then we could ensure that events Buffer/
don't arrive when the system is busy Pipeline/
EVENT 3
FIFO
e This is called de-randomization :::::f
and we achieve it by buffering
. . T (ms);
the data (having a holding
. v (H2)
gueue where we can slot it up to
be processed) . 0\
access time
distribution
>
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--RANDOMIZING

Buffer/ . . .
. Pipeline X Busy is now detfined by if

the buffer is full or not.

* Processor pulls data from
PROCESSOR the butter at fixed rate,
separating the event
receiving and data
processing steps
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GENERALIZING TO MULTI-CHANNEL
SYSTEM

N channels N channels N channels T
HT .!T - .FT E‘ J
i 'l i J- ) data digitization
AD X : - )
= > ]‘ ADC o ADC Front-End data buffering

\l { { data extraction

[Processing] EDrocessingﬂ EDrocessing] Readout |data formatting

data buffering

_ - event assembl
Data Collection Event Building event bufferingy

_ L nt rejection

[Processmgﬂ Event Filtering gxgnt bed?fgtrli?]g

: file storage
= Event Logging file buffering

Andrea Neqri
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HAT EXAMPLE WAS CUTE, BUT WHAT
B0O0UT THE LHC?

> —

e \What are the similarities & differences?

e Fixed frequency of LHC collisions means you don't need to have continuous
readout

e But events are still random —> de-randomization is needed!

e Remainder of today and tomorrow’s lectures are going to explain

how these basic concepts are applied to the LHC trigger & data
acquisition problem now and in the the future
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THE REST OF THE LECTURES

e Qverview of the current ATLAS & CMS TDAQ architecture

* ATLAS Level 1 Trigger & DAQ Today

e CMS High Level Trigger & DAQ Tomorrow

 How triggers are constructed for the LHC environment
e The art of menu building
e Creative solutions to challenging conditions

e |ooking forward to the upgrades

e [ HCb: The trigger-less future?

e Contending with 200 simultaneous collisions
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TDAQ: CMS & ATLAS
STYLE
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CENTRAL TRIGGER PROCESSOR &
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e Central Trigger Processor (CTP) and the Trigger
Timing and Control (TTC) form the brains of the

Level-1 Trigger:

e Takes primitives from L1Calo/L1Muon/L1Topo and
determines trigger decisions

e Produces Level 1 Accept (LTA), a unique event
identifier which is used, along with Bunch Crossing ID,
to synchronize pushed data to the rest of the system

e Provides a GPS-based UTC time stamp that is
included in the trigger information that is sent to the

readout system

e Controls detector BUSY
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CENTRAL TRIGGER PROCESSOR &

TIMING TRIGGER AND CONTROL SYSTEM

e Central Trigger Processor (CTP) and the Trigger
Timing and Control (TTC) form the brains of the

Level-1 Trigger:

e Takes primitives from L1Calo/L1Muon/L1Topo and
determines trigger decisions

e Produces Level 1 Accept (LTA), a unique event
identifier which is used, along with Bunch Crossing ID,
to synchronize pushed data to the rest of the system

e Provides a GPS-based UTC time stamp that is
included in the trigger information that is sent to the

readout system

e Controls detector BUSY

e All within 100ns
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TIMING IS EVERYTHING

Muon Detectors Electromagnetic Calorimeters

\

Solengich Forward Calorimeters

End Cap Toroid
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- Inner Detector | : :
Barrel Toroid Hadiahle Calarrhat Shielding
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ATLAS DEADTIM

e Simple dead-time veto:

e No new L1TA after fixed number

of BC

e | eaky-bucket Deadtime
Algorithm:

e Bucket leaks at rate R

e Contents increase by X at each
L1A until full, then BUSY is
asserted

e Allows system to maintain
high efficiency for data taking
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e Contents increase by X at each
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e Allows system to maintain
high efficiency for data taking
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SUMMARY

e TDAQ is the system which
allows us to take data off
our detectors for analysis

e Efficiency of data taking is
controlled through
stochastic input rate, DAQ
processing rate, and ability
to buffer events to process

e \We'll learn more about how
these are implemented and

what people are thinking
about the future tomorrow!
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