ISSUES IN HIGGS PHYSICS LECTURE 3

S. Dawson, BNL

Hadron Collider Summer School, August, 2018

Please send questions or corrections to dawson@bnl.gov

e^+e^- COLLIDERS

Note sharp threshold

 e^+ \overline{v} W^{2} H W^{2} $W^{$

Ζ

γH

٦Z

2

HIGGS WIDTH AT e^+e^- COLLIDERS

- Use recoil technique: $e^+e^- \rightarrow Zh$; tag $Z \rightarrow \mu^+\mu^-$, e^+e^-
 - Reconstruct recoil mass, $m^2_{
 m recoil} = (\sqrt{s} E_{l^+l^-})^2 \mid ec{p_{ll}}\mid^2$
 - Identify Higgs independent of decay
 - This gives: σ(Zh)~(g_{hZZ})²
 - Classify the rest of the events to measure $BR(h \rightarrow XX)$

HIGGS WIDTH AT e^+e^- COLLIDERS

- Recoil technique gives independent measurements of total width and branching ratios
- Get total Higgs width: $\Gamma_h = \frac{\Gamma(h \to ZZ)}{BR(h \to ZZ)} \sim \frac{\sigma(Zh)}{BR(h \to ZZ)}$
- At higher energies can also use $e^+e^- \rightarrow vvh$

$$\Gamma_h = \frac{\Gamma(h \to WW^*)}{BR(h \to WW^*)}$$

Advantage: Coupling extractions don't need assumptions about total width

NEW PHYSICS IN HIGGS SECTOR

MORE HIGGS PARTICLES

NO SIGN OF MORE HIGGS-LIKE PARTICLES

- No shortage of models predicting more Higgs particles
 - Singlet model, 2HDM, Triplet model, MSSM, NMSSM.....
- Models typically do **not** predict masses of new Higgs particles ((N)MSSM is an exception)
- Models typically have a limit where all the new particles are heavy and all the Higgs couplings "look like" the SM

MOTIVATIONS FOR MORE HIGGS

- Why should the scalar sector be minimal?
- Extended Higgs sectors can have dark matter candidate
- Extended Higgs sectors can explain baryogenesis with new sources of CP violation in Higgs sector
- Many BSM models require more Higgs

OBVIOUS RESTRICTIONS ON EXTENDED HIGGS MODELS

- ρ parameter (and more generally electroweak corrections) limit extended Higgs sectors

$$\rho = \frac{\sum_{i} \left[T_{i}(T_{i}+1) - \frac{1}{4}Y_{i}^{2} \right] v_{i}^{2}}{\frac{1}{2}\Sigma_{i}Y_{i}^{2}v_{i}^{2}} = \frac{M_{W}^{2}}{M_{Z}^{2}c_{W}^{2}}$$

T_i is weak isospin

• $T_i = 1/2$ for doublet; can have as many doublets as you want

$$\phi = \begin{pmatrix} \phi^+ \\ \frac{1}{\sqrt{2}}(v+h+i\phi_z) \end{pmatrix}, \ T_3 = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}, \ Q = T_3 + Y \qquad \rho = \frac{\sum_i \left[\frac{1}{2} \cdot \frac{3}{2} - \frac{1}{4} \right] v_i^2}{\frac{1}{2} \sum_i v_i^2} = 1$$

• Singlet doesn't contribute to M_{VV} , M_Z so $\rho=1$ trivially

New scalars typically contribute to other precision EW observables

EXTENDED HIGGS SECTORS

• 2 possibilities for Higgs triplets

$$X_t = \begin{pmatrix} \zeta^+ \\ \zeta^0 \\ \zeta^- \end{pmatrix} \qquad \qquad X'_t = \begin{pmatrix} \xi^{++} \\ \xi^+ \\ \xi^0 \end{pmatrix} \qquad \qquad \qquad \text{Higgs} \\ \text{signa}$$

Doubly charged Higgs provides nice signature

• Extreme fine tuning required in general

$$\rho = 1 + \frac{4(v_{\chi}^2 - v_{\xi}^2)}{v^2}$$

- Simple
- Singlet can be portal to hidden sector
- Can give first order EW phase transition for some parameter values
- Can generate enhancements of hh production

CONS:

• No prediction for mass/mixing parameters

SINGLET MODEL WITH Z₂

• Very predictive: (invariant under $S \rightarrow -S$)

$$V = -\mu^2 \phi^{\dagger} \phi - m^2 S^2 + \lambda (\phi^{\dagger} \phi)^2 + \frac{a_2}{2} (\phi^{\dagger} \phi) S^2 + \frac{b_4}{4} S^4$$

• Physical fields: $h = \cos \theta h_{SM} - \sin \theta S$ $H = \sin \theta h_{SM} + \cos \theta S$

• Physical parameters:

$$M_h, M_H, v, tan\beta = \frac{v}{\langle S \rangle}, \theta$$

• Unitarity bound from $hh \rightarrow hh$

$$\operatorname{an}^2 \beta < \frac{16\pi v^2}{3M_H^2}$$

 M_H is heavier Higgs

12

Z₂ SYMMETRIC SINGLET MODEL

• Very simple model:

Coupling to light Higgs $\sim \cos \theta$ Coupling to heavy Higgs $\sim \sin \theta$

• If kinematically allowed, $H \rightarrow hh$

 $\Gamma(h) = \cos^2 \theta \Gamma_{SM}$ $\Gamma(H) = \sin^2 \theta \Gamma_{SM} + \Gamma(H \to hh)$

SINGLET MODEL

- Experimental limits on coupling suppression of SM-like Higgs to SM fermions (sin² θ < .12)
- Information from recasting heavy Higgs searches can also be used

$$\sigma_{h} = \cos^{2} \theta \sigma_{SM}, \quad \Gamma_{h} = \cos^{2} \theta \Gamma_{SM}, \quad BR(h \to SM) = BR_{SM}, \quad \mu_{h} = \cos^{2} \theta$$
$$\sigma_{H} = \sin^{2} \theta \sigma_{SM}, \quad \Gamma_{H} = \sin^{2} \theta \Gamma_{SM} + \Gamma_{H} BR(H \to hh), \quad \mu_{H} = \sin^{2} \theta \left[1 - BR(H \to hh)\right]$$

COMPLEMENTARITY OF APPROACHES

- Find heavier Higgs and measure deviations in couplings
- $\sin^2\theta$ < .12 from h couplings

Need increased sensitivity in direct searches

PREDICTIVE MODEL: NOT JUST HIGGS COUPLINGS

• $|\cos \theta| > .92$ from Higgs couplings, heavy Higgs searches, M_W

Ilnicka, Robens , Stefaniak, 1803.03594

DECOUPLING LIMIT OF SINGLET MODEL

$$\langle \phi \rangle = \frac{v}{\sqrt{2}}, \quad \langle S \rangle = \frac{x}{\sqrt{2}}$$

- Decoupling:
 - M_H >> m_h

$$\sin \theta \sim \frac{|a_2| vx}{2(M_H^2 - m_h^2)} << 1$$

• Limit where model looks SM-like is typical of many extended Higgs sectors

BRANCHING RATIO $\,H \to hh\,\,$ can be significant

RESONANT PRODUCTION OF hh

- Large resonant effects when $M_H \sim 2M_h$
- NWA approximation accurate for $M_H < 400 \text{ GeV}$

[[]Dawson, Lewis, arXiv:1508.05397]

[Dawson, Lewis, arXiv:1508.05397]

HIGGS SINGLET MODEL WITHOUT Z₂

$$V(\phi, S) = V_{SM}(\phi) + V_{\phi S}(\phi, S) + V_{S}(S)$$
$$V_{\phi S}(\phi, S) \notin \frac{a_{1}}{2}(\phi^{\dagger}\phi)S + \frac{a_{2}}{2}(\phi^{\dagger}\phi)S^{2}$$
$$V_{S}(S) = b_{1}S + \frac{b_{2}}{2}S^{2} + \frac{b_{3}}{3}S^{3} + \frac{b_{4}}{4}S^{4}$$

- Models without Z₂ symmetry motived by desire to explain electroweak baryogenesis
- (They typically prefer negative a_1 , b_3 and lighter H)
- Can set tan β =0 in this case

More parameters, but still can be studied in terms of mass of H, coupling of h, H to SM fermions, coupling of Hhh

[Profumo, Ramsey-Musolf, Wainwright, Winslow, arXiv: 1407.5342; Curtin, Meade, Yu, 1409.0005]

HH CAN GIVE INFORMATION ON ELECTROWEAK PHASE TRANSITION

• Models with scalar singlets can allow first order electroweak phase transition

Suppression of SM Higgs couplings

- Motivation for high energy colliders
- Can probe region with EW phase transition in hh production

Kotwal, Ramsey-Musolf, No, Winslow, 1605.06123

2HDM

- Model has 2 Higgs doublets with vevs, v_1 and v_2 , tan $\beta = v_2/v_1$
 - 2HDM has 8 degrees of freedom: 3 become longitudinal degrees of freedom of $W^{\pm},\ Z$
- 5 degrees of freedom left: h, H (neutral), A (pseudoscalar), H^{\pm}
- Diagonalize neutral Higgs mass matrix with angle $\boldsymbol{\alpha}$

$$\sin 2\alpha = -\sin 2\beta \left(\frac{M_H^2 + m_h^2}{M_H^2 - m_h^2}\right)$$

2HDM

PROS:

- No reason why SM should have only I Higgs doublet
- 2 Higgs doublets are just as good as 1
- Lots of new phenomenology (especially with charged H⁺)
- FCNC from Higgs exchange easy to avoid in any model with doublets
- MSSM follows naturally from 2HDM

CONS:

• No predictions for masses/coupling constants

GENERAL 2 HIGGS DOUBLET MODEL

• 6 free parameters, plus a phase

$$V(H_{1}, H_{2}) = \lambda_{1}(H_{1}^{+}H_{1} - v_{1}^{2})^{2} + \lambda_{2}(H_{2}^{+}H_{2} - v_{2}^{2})^{2} + \lambda_{3}\left[(H_{1}^{+}H_{1} - v_{1}^{2}) + (H_{2}^{+}H_{2} - v_{2}^{2})\right]^{2} \quad \langle H_{1} \rangle = \begin{pmatrix} 0 \\ v_{1} \end{pmatrix} \quad \langle H_{2} \rangle = \begin{pmatrix} 0 \\ v_{2}e^{i\xi} \end{pmatrix} + \lambda_{4}\left[(H_{1}^{+}H_{1})(H_{2}^{+}H_{2}) - (H_{1}^{+}H_{2})(H_{2}^{+}H_{1})\right] + \lambda_{5}\left[\operatorname{Re}(H_{1}^{+}H_{2}) - v_{1}v_{2}\cos\xi\right]^{2} + \lambda_{6}\left[\operatorname{Im}(H_{1}^{+}H_{2}) - v_{1}v_{2}\sin\xi\right]^{2}$$

• W and Z masses just like in Standard Model
$$M_{W}^{2} = \frac{g^{2}(v_{1}^{2} + v_{2}^{2})}{2}$$

25

W and Z masses just like in Standard Model

•
$$\rho$$
 parameter: $\rho = \frac{M_W}{M_Z \cos \theta_W} =$

 ρ =1 for any number of Higgs doublets or singlets

ONCE AGAIN LIMITS FROM PRECISION ELECTROWEAK

 $\rho \sim (m_i^2 - m_j^2)$

where m_i, m_j are the scalar masses

Haller, Hoecker, Kogler, Monig, Peiffer, Stelzer, 1803.01853

GAUGE BOSON COUPLINGS TO HIGGS IN 2HDM

- $g_{hVV}^2 + g_{HVV}^2 = g_{hVV}^2(SM)$
- Vector boson fusion and Vh production always suppressed

$$\frac{g_{hVV}}{g_{h,smVV}} = \sin(\beta - \alpha)$$
$$\frac{g_{HVV}}{g_{HVV}} = \cos(\beta - \alpha)$$

hVV couplings go to SM couplings when $\cos (\beta - \alpha) \rightarrow 0$

HIGGS COUPLINGS IN 2HDM

- 2 Higgs doublet models with no FCNC
 - Parameters are α (mixing in neutral sector), λ_{5} , tan $\beta,\,M_{\text{h}},\,M_{H_{\text{s}}}\,M_{A_{\text{s}}}\,M_{H^{+}}$
 - 4 possibilities for Higgs coupling assignments

$$L = -g_{hii} \frac{m_i}{v} \overline{f}_i f_i h - g_{hVV} \frac{2M_V^2}{v} V_\mu V^\mu h$$

	Ι	II	Lepton Specific	Flipped
g_{hVV}	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
$g_{ht\overline{t}}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$
$g_{hb\overline{b}}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$
$g_{h au^+ au^-}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$

Type II is MSSM – like 2 Higgs doublet model

HIGGS DECAYS CHANGED AT LARGE TAN $\boldsymbol{\beta}$

• At large tan β , rates to \overline{bb} and $\tau^+\tau^-$ large

Rate to bb and $\tau^+\tau^-$ almost constant in type-II 2HDM for H,A

29

DECOUPLING LIMIT

- 2HDMs approach SM when $\cos(\beta \alpha) \rightarrow 0$
- Current limits allow non-SM like couplings
 - Higgs coupling measurements sensitive probes of theory even if new Higgs particles too heavy to be produced

 $pp \to A \to ZH, H \to b\bar{b}$

30

HOW IS THE MSSM HIGGS SECTOR DIFFERENT FROM A 2HDM?

- MSSM and 2HDM both have 2 scalar SU(2) doublets
- 2HDM has 7 parameters in scalar potential: α , tan β , M_H, M_h, M_A, M_{H±}, λ_5
- MSSM has 2 parameters in scalar sector: M_A , tan β
- 2HDM Higgs masses are free parameters
- MSSM predicts (at tree level): $M_{H\pm}^2 = M_A^2 + M_W^2$ $m_h^2 + M_H^2 = M_A^2 + M_Z^2$ $m_h^2 M_H^2 = M_Z^2 M_Z^2 \cos^2(2\beta)$

*large radiative corrections to MSSM mass relations

HOW IS THE MSSM HIGGS SECTOR DIFFERENT FROM A 2HDM?

- MSSM and 2HDM have same couplings of gauge bosons to scalars
- MSSM has same scalar- fermion couplings as Type-II 2HDM
- Cubic Higgs couplings different in 2HDM and MSSM
 - (this will show up in hh limits)

DIRECT SEARCH AND COUPLING MEASUREMENTS ARE TYPICALLY COMPLIMENTARY

- 2HDM: h⁰, H⁰, A⁰, H[±]
 - Scalar couplings of type-II 2HDM is identical to MSSM
- Higgs sector described in terms of M_h , M_H , M_A , $M_{H\pm}$, tan β

ATLAS, 1610.07922

LOOKING FOR HEAVY HIGGS

- Mass reach grows slowly with luminosity, and faster with energy
- High luminosity LHC is all about coupling measurements

PRECISION PROBES OF HIGGS COUPLINGS

NO SIGN OF MORE HIGGS-LIKE PARTICLES

- No shortage of models predicting more Higgs particles
 - But no evidence yet....
- Look for new physics in tails of distributions
 - Requires precision calculations of SM predictions for comparison
 - This is much harder than looking for resonances

MAJOR EWSB EXPLORATION OF LHC FUTURE RUNS WILL BE HIGGS COUPLINGS

- Because most heavy Higgs limits will come with 300 fb⁻¹
- Will require precision theory calculations in both the SM and in EFTs
- Theory is already limiting factor in coupling extractions
- ATLAS/CMS 7-8 TeV data

 $\frac{\sigma}{\sigma_{SM}} \equiv \mu = 1.09 \pm 0.07(stat) \pm .04(syst)$ $\pm .03(th \ bckd) \stackrel{+.07}{\underbrace{}_{.06}}(th \ signal)$

ARE HIGGS COUPLINGS REALLY PROPORTIONAL TO MASS AND FLAVOR DIAGONAL?

- Does Higgs couple to 1st and 2nd generations?
- 3 ab^{-1} projection is 7 σ for $h \rightarrow \mu\mu$ with $\delta\mu/\mu \sim \pm 20\%$

Konig, Neubert, 1505.03870

Small rates for $h \rightarrow \phi \gamma$, $\psi \gamma$

38

TESTING HIGGS COUPLINGS: RUN I

Assume no new resonances/zero width approx/no new tensor structures

$$\sigma \cdot BR(ii \to h \to jj) = \frac{\sigma_{ii}\Gamma_{ij}}{\Gamma_h}$$

Define scaling factors k

TESTING HIGGS COUPLINGS: RUN I

$$\mu(gg \to h \to X_i X_i) = \frac{\sigma(gg \to h \to X_i X_i)}{\sigma(gg \to h \to X_i X_i) \mid_{SM}} = \frac{\kappa_g^2 \kappa_g^2}{\kappa_h^2}$$

- Approaches to loops: κ_{γ} , κ_{g} can be
 - Written as function of SM scaling factors: eg $\kappa_g = \kappa_g (\kappa_t, \kappa_b)$
 - Treated as free parameters to look for BSM contributions

WHAT DOES GLUON FUSION MEASURE?

$$L_{off} = L_{SM} - \frac{\alpha_s}{12\pi v} \delta \kappa_g G^A_{\mu\nu} G^{\mu\nu,A} - \delta \kappa_t \frac{m_t}{v} \bar{t} th$$

- New physics could be in ggh vertex or Yukawa couplings
- gg \rightarrow h cannot distinguish $\delta \kappa_g$ from $\delta \kappa_t$ in the large m_t limit
- Not a clean measurement of tth coupling (and of course there could be new colored particles in the loop)
- Direct measurement of tth crucial

RUN I LIMITS

Looks fairly SM like Run-2 h \rightarrow bb observation changes κ_b Run-2 tth observation changes κ_t

Need to improve fit technique to include kinematic effects and higher order theory

42

RUN-2 RESULTS

• ggh and gyy loops can in principle distinguish sign of Yukawas

 $ggh: 1.04\kappa_t^2 + .002\kappa_b^2 - .038\kappa_t\kappa_b$ $h\gamma\gamma: 1.59\kappa_W^2 + .007\kappa_t^2 - .067\kappa_W\kappa_t$

43

.000000000

SMALL CORRECTIONS EXPECTED IN BSM

If new physics is at I TeV:

	δκγ	δκ _b	δκγ
Singlet	<6%	<6%	<6%
2HDM (large t_{β})	~1%	~10%	~1%
MSSM	~.001%	~1.6%	~4%
Composite	~-3%	~-(3-9)%	~-9%
Top Partner	~-2%	~-2%	~1%

Patterns of deviations can pinpoint specific BSM physics

* Numbers respect limits on BSM particles

κ rescaling of higgs couplings

- Problems:
 - Gauge invariance requires κ=1
 - Higgs couplings not free parameters in SM
 - Not a consistent field theory \rightarrow no higher order corrections
 - EW corrections don't factorize
 - No kinematic information
 - Higgs coupling measurements cannot be combined with other measurements

REQUIRES EFFECTIVE FIELD THEORY FRAMEWORK

- Assume $SU(3) \times SU(2) \times U(1)$ gauge theory with no new light particles
- Assume Higgs particle is part of SU(2) doublet (defines SMEFT)
- SM is low energy limit of effective field theory with towers of higher dimension operators

$$L = L_{SM} + \Sigma \frac{c_i}{\Lambda^2} O_i^{d=6} + \sigma \frac{c_i}{\Lambda^4} O_i^{d=8} + \dots$$
BSM Effects SM Particles

Dimension-5 operators contribute to lepton number violation

SMEFT

- Many operators, so simplify by neglecting flavor Still 59 operators
 - Some operators strongly limited by low energy physics (eg STU)
- Different parameterizations connected by equations of motion
 - Straightforward to go from one basis to another
 - Choice of basis reflects prejudice on high scale physics generating SMEFT
- Effects of derivatives in tails of distributions
- Radiative corrections can be systematically included in SMEFT

CONSTRUCT SMEFT FOR HIGGS

Limits from measurements

 $(\phi^{\dagger}\phi)G^{A}_{\mu
u}G^{\mu
u,A}$ **g**s $\begin{array}{ll} \mathsf{g} & (\phi^{\dagger}\phi)B_{\mu\nu}B^{\mu\nu} & & h \to \gamma\gamma \\ \mathsf{g}' & (\phi^{\dagger}\phi)W^{a}_{\mu\nu}W^{\mu\nu^{a}} & & h \to Z\gamma \\ \mathsf{M}_{\mathsf{W}} & (\phi^{\dagger}\phi) \mid D_{\mu}\phi \mid^{2} & & h \to VV^{*} \\ \mathsf{M}_{\mathsf{h}} & (\phi^{\dagger}\phi)^{3} & & \lambda_{3} \end{array}$ $\mathbf{M}_{\mathbf{f}} \quad (\phi^{\dagger}\phi)\overline{f}_{L}\phi f_{R} + hc \qquad h\tau\tau, hb\overline{b}, ht\overline{t}$

 $gg \rightarrow h$

Take SM operators and add
$$\phi^{\dagger}\phi = \frac{1}{2}(h+v)^2$$

48

OTHER OPERATORS MORE COMPLICATED

Х ³		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\vec{l}_{p}'e_{r}'\varphi)$
Q_{C}	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi 0}$	$(\varphi^{\dagger}\varphi)_{\Box}(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\vec{q}_{p}^{\prime}u_{r}^{\prime}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{*} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}^{\prime}d_{r}^{\prime}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK} \widetilde{W}^{I_{\nu}}_{\mu} W^{J_{\rho}}_{\nu} W^{K\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(l_p^{\mu\nu}\sigma^{\mu\nu}e_{\tau}')\tau^I\varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(l_{p}^{p} \gamma^{\mu} l_{r}^{\prime})$
$Q_{\varphi \overline{G}}$	$\varphi^{\dagger}\varphi \tilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(l_p^{\prime}\sigma^{\mu\nu}e_{\tau}^{\prime})\varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu}^{I} \varphi)(l_{p}^{p}\tau^{I}\gamma^{\mu}l_{\tau}^{\prime})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\vec{q}_p' \sigma^{\mu\nu} T^A u_r') \tilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{e}'_{p} \gamma^{\mu} e'_{r})$
$Q_{\varphi \overline{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\vec{q}_p^I \sigma^{\mu\nu} u_{\tau}^I) \tau^I \tilde{\varphi} W_{\mu\nu}^I$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\vec{q}'_{p} \gamma^{\mu} q'_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\vec{q}'_p \sigma^{\mu\nu} u'_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\overrightarrow{q}^{\prime}_{p} \tau^{I} \gamma^{\mu} q^{\prime}_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu} B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p^\prime \sigma^{\mu \nu} T^A d_r^\prime) \varphi G^A_{\mu \nu}$	$Q_{\varphi m}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{u}'_{p} \gamma^{\mu} u'_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\vec{q}_p^I \sigma^{\mu \nu} d_r^I) \tau^I \varphi W^I_{\mu \nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(d_{p}^{p} \gamma^{\mu} d_{r}^{p})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi \widehat{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\vec{q}'_p \sigma^{\mu\nu} d'_r) \varphi B_{\mu\nu}$	$Q_{arphi u d}$	$i(\hat{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}'_{p}\gamma^{\mu}d'_{r})$

(LL)(LL)		(<i>RR</i>)(<i>RR</i>)		(LL)(RR)	
Qu	$(\overline{l}_{p}^{\prime}\gamma_{\mu}l_{r}^{\prime})(\overline{l}_{s}^{\prime}\gamma^{\mu}l_{t}^{\prime})$	Q_{ee}	$(\vec{e}_p' \gamma_\mu e_\tau')(\vec{e}_s' \gamma^\mu e_t')$	Q_{le}	$(\bar{l}_p^{\prime}\gamma_{\mu}l_r^{\prime})(\bar{e}_s^{\prime}\gamma^{\mu}e_t^{\prime})$
$Q_{qq}^{(1)}$	$(\vec{q}_p^\prime \gamma_\mu q_r^\prime) (\vec{q}_s^\prime \gamma^\mu q_t^\prime)$	Q_{uu}	$(\bar{u}_p^\prime \gamma_\mu u_r^\prime)(\bar{u}_s^\prime \gamma^\mu u_t^\prime)$	Q_{lu}	$(\bar{l}_p^{\prime}\gamma_{\mu}l_r^{\prime})(\bar{u}_s^{\prime}\gamma^{\mu}u_t^{\prime})$
$Q_{qq}^{(3)}$	$(\vec{q}_p^\prime \gamma_\mu \tau^I q_r^\prime) (\vec{q}_s^\prime \gamma^\mu \tau^I q_t^\prime)$	Q_{dd}	$(d_p^y \gamma_\mu d_r^y)(d_s^y \gamma^\mu d_t^y)$	Q_{ld}	$(l_p^l \gamma_\mu l_\tau^l) (d_s^l \gamma^\mu d_t^l)$
$Q_{lq}^{(1)}$	$(\bar{l}_{p}^{\prime}\gamma_{\mu}l_{r}^{\prime})(\bar{q}_{s}^{\prime}\gamma^{\mu}q_{t}^{\prime})$	Q_{cu}	$(\bar{e}'_p \gamma_\mu e'_r)(\bar{u}'_s \gamma^\mu u'_t)$	Q_{qe}	$(\bar{q}_p^\prime \gamma_\mu q_r^\prime) (\bar{e}_s^\prime \gamma^\mu e_t^\prime)$
$Q_{lq}^{(3)}$	$(\bar{l}'_p \gamma_\mu \tau^I l'_\tau) (\bar{q}'_s \gamma^\mu \tau^I q'_t)$	Q_{cd}	$(\bar{e}'_p \gamma_\mu e'_r)(\bar{d}'_s \gamma^\mu d'_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p^\prime \gamma_\mu q_r^\prime)(\bar{u}_s^\prime \gamma^\mu u_t^\prime)$
		$Q_{\mathrm{ud}}^{(1)}$	$(\bar{u}_p^\prime \gamma_\mu u_r^\prime) (\bar{d}_s^\prime \gamma^\mu d_t^\prime)$	$Q_{qu}^{(8)}$	$(\bar{q}_p^\prime \gamma_\mu \mathcal{T}^A q_r^\prime) (\bar{u}_s^\prime \gamma^\mu \mathcal{T}^A u_t^\prime)$
		$Q_{\mathrm{nd}}^{(8)}$	$(\bar{u}_p^\prime \gamma_\mu \mathcal{T}^A u_r^\prime) (\bar{d}_s^\prime \gamma^\mu \mathcal{T}^A d_t^\prime)$	$Q_{qd}^{(1)}$	$(\vec{q}_p' \gamma_\mu q_r') (\vec{d}_s \gamma^\mu d_t')$
				$Q_{qd}^{(8)}$	$(\bar{q}_p^\prime \gamma_\mu \mathcal{T}^A q_r^\prime) (\bar{d}_s^\prime \gamma^\mu \mathcal{T}^A d_t^\prime)$
(LR)(RL) and $(LR)(LR)$		B-violating			
$Q_{ledg} = (\vec{l}_p^{\prime j} e_r^{\prime})(\vec{d}_s^{\prime} q_t^{\prime j}) \qquad Q_{dug}$		Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\prime\alpha})^T C u_{\tau}^{\prime\beta}\right]\left[(q_s^{\prime\gamma j})^T C l_t^{\prime k}\right]$		
$Q_{quqd}^{(1)}$	$(\bar{q}_p^{\prime j} u_r^{\prime}) \varepsilon_{jk} (\bar{q}_s^{\prime k} d_t^{\prime})$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\prime\alpha j})^T C q_r^{\prime\beta k}\right] \left[(u_s^{\prime\gamma})^T C e_t^{\prime}\right]$		
$Q_{quqd}^{(8)}$	$(\bar{q}_p^{\prime j}\mathcal{T}^A u_r^\prime) \varepsilon_{jk} (\bar{q}_s^{\prime k}\mathcal{T}^A d_t^\prime)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\prime\alpha j})^T \mathbb{C}q_r^{\prime\beta k}\right]\left[(q_s^{\prime\gamma m})^T \mathbb{C}l_t^{\prime n}\right]$		
$Q_{logu}^{(1)}$	$(\vec{l}_{p}^{\prime j}e_{\tau}^{\prime})\varepsilon_{jk}(\vec{q}_{s}^{\prime k}u_{t}^{\prime})$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_p^{\prime\alpha})^T \mathbb{C} u_r^{\prime\beta}\right]\left[(u_s^{\prime\gamma})^T \mathbb{C} e_t^{\prime}\right]$		$\left[(u_s^{i_\gamma})^T \mathbb{C} e_t^{i_\gamma} \right]$
$Q_{logu}^{(3)}$	$(\bar{l}_p^{\prime j}\sigma_{\mu\nu}e_{\tau}^{\prime})\varepsilon_{jk}(\bar{q}_s^{\prime k}\sigma^{\mu\nu}u_t^{\prime})$				

+....

49

MOMENTUM DEPENDENT OPERATORS CHANGE KINEMATIC DISTRIBUTIONS

- Look in tails of distributions
- Typically quite small effects: $\mathcal{O}\left(\frac{p_T^2}{10}\right)$

Couplings contrained to

give correct rate for ggh

Higgs plus jet production at 14 TeV

Schlaffer, Spannowsky, Takeuchi, Weiler, Wymant

 $c_t = k_t$

CAN'T JUST FIT HIGGS COUPLINGS

Operators that contribute to VVV vertices and Higgs-VV vertices $O_W = (D_\mu \phi)^{\dagger} W^{\mu\nu} (D_\nu \phi)$ $O_B = (D_\mu \phi)^{\dagger} B^{\mu\nu} (D_\phi)$ $O_{WW} = Tr(W_{\mu\nu} W^{\nu\rho} W^{\mu}_{\rho})$ $W_{W,z}$

Anomalous qqZ vertices too!

- Changing ZWW, γ WW vertices spoils high energy cancellations between contributions
- Effective field theory effects enhanced at high energy, high p_T

AN OLD STORY

- Understanding EFT expansion
- At high energy, $\epsilon_{VVL}^{\mu} \sim p^{\mu}/M_{VV}$

γ , Z contributions combine so that no growth with energy in total cross section

 $|A_{\pm\mp LL}|^2 \sim \mathcal{O}(1)$ $|A_{\pm\mp L\pm}|^2 \sim \mathcal{O}(\frac{M_W^2}{s})$ $|A_{-+\pm\pm}|^2 \sim \mathcal{O}(\frac{M_W^4}{s^2})$

Amplitudes for transverse W's in final state vanish in high energy limit

Duncan, Kane, and Repko NP B272 (1986) 517; Ahn, Peskin, Lynn, Selipsky, NPB309 (1988) 221

MORE OLD STORY

• Changing WWZ or WW γ coupling spoils unitarity conserving cancellation

To dimension-6, we are sensitive to interference with SM

Dixon, Kunszt, Signer, PRD60 (1999) 114037; Hagiwara, Peccei, Zeppenfeld, NP282 (1987) 253

FITS WITH KINEMATIC INFORMATION

Blue: (Run-1 data) Green: (300 fb⁻¹) Orange: (3000 fb⁻¹)

Englert, Kogler, Spannowsky, 1511.05170

MORAL OF HIGGS COUPLING FITS

- You get much better fits if you fit only I coupling at a time (this is a bad idea since in any given UV complete model there will be multiple non-zero couplings)
- Fits are only sensitive to c/Λ^2

[Ellis, Murphy, Sanz, You, 1803.03252]

HIGGS PHYSICS ISN'T ALONE

- Is the tth coupling the Standard Model coupling?
- Non-SM contributions change rate/distributions

- Observation of gluon fusion production of Higgs at expected rate doesn't mean Higgs has SM tth coupling
- Need tth production
- High luminosity will pin down coupling

WHEN IS EFT VALID?

$$L \to L_{SM} + \Sigma_i \frac{C_{6i}}{\Lambda^2} O_{6i} + \Sigma_i \frac{C_{8i}}{\Lambda^4} O_{8i} + \dots$$

• SMEFT $A^2 \sim |A_{SM} + \frac{A_6}{\Lambda^2} + \dots |^2 \sim A_{SM}^2 + \frac{A_{SM}A_6}{\Lambda^2} + \frac{A_6^2}{\Lambda^4} + \dots$

• To have small BSM effects $\rightarrow A_{SM} A_6 >> |A_6|^2$, $A_8 A_{SM}$

- ie Interference must be largest contribution
- This was the case at LEP
- Dimension-6 operators in HEFT form an expansion in s/Λ^2
- At some scale unitarity is violated

If I only keep C_6/Λ^2 terms and drop $(C_6/\Lambda^2)^2$, the cross section is not guaranteed to be finite

COUNTING LORE

$$\sigma \sim g_{SM}^2 (A_{SM})^2 + g_{SM}g_{BSM}A_{SM}A_6 \frac{s}{\Lambda^2} + g_{BSM}^2 (A_6)^2 \frac{s^2}{\Lambda^4} + g_{SM}g_{BSM}A_{SM}A_8 \frac{s^2}{\Lambda^4}$$
Same order of magnitude if $g_{SM} \sim g_{BSM}$
(Dim-6)² could dominate if $g_{BSM} >> g_{SM}$

59

WHAT DO WE LEARN BY FITTING HIGGS COUPLINGS?

- In any given high scale model, coefficients of EFT predicted in terms of small number of parameters
- Different coefficients are generated in different models
- By measuring the pattern of coefficients, information is gleaned about high scale physics

Complex 0.4 scalar triplet-0.2 Real scalar triplet Real scalar singlet ပံ 0.0 $O_H = \frac{1}{2v^2} \partial_\mu (\phi^{\dagger} \phi) \partial^\mu (\phi^{\dagger} \phi)$ -0.2 $O_f = \frac{(\phi^{\dagger}\phi)}{v^2} c_f y_f(\overline{\psi}_L f_R \phi)$ -0.4-0.4 -0.2 0.2 0.0 0.4 C_H

Fit to Higgs data

Dawson, Murphy, 1704.07851

AT 27 TEV

Precision on Higgs couplings improved at high energy

C. Murphy

HISTORY AS A GUIDE

• μ decay: Gives very precisely measured G_F~10⁻⁵ GeV⁻²

Rate grows with energy ~ G_F² (Energy)²
 Theory only makes sense for Energy < 600 GeV

• Inverse μ decay: $\mu\nu \rightarrow e\nu$

• W boson saves the day

Rate ~ $G_F^2 M_W^2$

Something like the W had to exist

62

W BOSON RE-INTRODUCES THE SAME PROBLEM

Scattering amplitudes of W's grow with energy

- WW scattering violates *unitarity* at energy of 3000 GeV = 3 TeV
- Higgs boson solves this as long as M_h < 800 GeV

Something like the Higgs boson had to exist

THE NEW PARADIGM

- Past: Guaranteed discoveries ensured by no-lose theorems
 - Beyond the Fermi theory (the W)
 - Beyond the bottom quark (the top)
 - Beyond the electroweak theory (the Higgs)
 - Scattering amplitudes grow with energy without W, top, Higgs....
 - Knew the scale of new physics
 - Future : No guarantees

CONCLUSIONS

- What I'd really like to know:
 - Are there more Higgs particles (should know soon)
 - Is there a significant Higgs invisible width (clear signal for new physics)
 - Are the Higgs couplings within ~5% of the SM predictions (long and hard slog to get there; requires fits with gauge boson/top contributions)
 - Does the Higgs couple to 1st and 2nd generation fermions?
 - With no flavor changing Higgs couplings?
 - What is the Higgs self-coupling (ie, is it really the Higgs potential generating W/Z masses?) Motivation for higher energy machines

