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Why Foundations Matter
In the “final analysis”, we often make approximations, take a 
pragmatic approach, or follow a convention.  
To inform such actions, it is important to understand some 
foundational aspects of statistical inference.
In Quantum Mechanics, we are used to the fact that for all of our 
practical work, one’s philosophical interpretation (e.g., of 
collapse of the wave function) does not matter.        
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Why Foundations Matter (cont.)
In statistical inference, however, foundational differences result 
in different answers: one cannot ignore them!
The professional statistics community went through the topics 
of many of our discussions starting in the 1920’s, and revisited 
them in the resurgence of Bayesian methods in recent decades.
I will attempt to summarize some of the things we should 
understand from that debate.  
Most importantly: understand both approaches!
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Definitions are Important

As in physics, much confusion can be avoided by being precise 
about definitions, and much confusion can be generated by 
being imprecise, or by assuming every-day definitions in a 
technical context.

You should see just as much confusion in these two statements:
1) “The confidence level tells you how much confidence one 

has that the true value is in the confidence interval.”
2) “A noninformative prior probability density does not insert 

any information.” 
...as you have learned to see in the statement,

“I did a lot or work today by carrying this big stone around 
the building and then putting it back in its original place.”
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Example adapted from Eadie et al. (James06, p. 2)

Physicists say… when Statisticians say:

Determine
Estimate
Gaussian
Breit-Wigner, 
Lorentizian

Estimate
(Informed) Guess
Normal
Cauchy

Bob Cousins, Stats in Theory, HCPSS 2018 6



Key tasks: Important to distinguish!

• Point estimation: what single “measured” value of a parameter 
do you report?
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Key tasks: Important to distinguish!

• Point estimation: what single “measured” value of a parameter 
do you report?

• Interval estimation: what interval (giving a measure of 
uncertainty of the parameter inference) do you report?
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Key tasks: Important to distinguish!

• Point estimation: what single “measured” value of a parameter 
do you report?

• Interval estimation: what interval (giving a measure of 
uncertainty of the parameter inference) do you report?

• Hypothesis testing: Many special cases:
a) A given functional form (“model”) vs another functional 

form.  Also known as “model selection”.
b) A single value of a parameter (say 0 or 1) vs all other values
c) Goodness of Fit: A given functional form against all other 

(unspecified) functional forms (aka “model checking”)
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Key tasks: Important to distinguish!

• Point estimation: what single “measured” value of a parameter 
do you report?

• Interval estimation: what interval (giving a measure of 
uncertainty of the parameter inference) do you report?

• Hypothesis testing: Many special cases:
a) A given functional form (“model”) vs another functional 

form.  Also known as “model selection”.
b) A single value of a parameter (say 0 or 1) vs all other values
c) Goodness of Fit: A given functional form against all other 

(unspecified) functional forms (aka “model checking”)
• Decision making: What action should I take (tell no one, issue 

press release, propose new experiment, ...) based on the 
observed data?  Rarely done formally in HEP, but important to 
understand outline of formal theory, to avoid confusion with 
inference and to inform informal application.
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Key tasks: Important to distinguish! (cont.)

In frequentist statistics, the above hypothesis testing case,
(b) A single value of a parameter (say 0 or 1) vs all other values,
maps identically onto interval estimation. 
This is called the duality of “inversion of a hypothesis test to get 
confidence interval”, and vice versa.  I just mention it now but 
discuss it in more detail later.
In contrast, in Bayesian statistics, testing case (b) is an 
especially controversial form of case (a) model selection.                  
The model with fixed value of parameter is lower-dimensional in 
parameter space than the model with parameter not fixed.
Again, I just mention this now to foreshadow a very deep issue, 
where frequentist and Bayesian methods do not converge in the 
limit of large data sets.
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“Probability”
• Abstract mathematical probability P can be defined in terms of 

sets and axioms that P obeys.  Conditional probabilities are 
related by Bayes’ Theorem (or “Bayes’ Rule”) -- see next slide,

P(B|A) = P(A|B) P(B) / P(A).
• Two established* incarnations of P are:

1) Frequentist P: limiting frequency in ensemble of imagined 
repeated samples (as usually taught in Q.M.).         
P(constant of nature) and P(SUSY is true) do not exist (in a 
useful way) for this definition of P (at least in one universe).

2) (Subjective) Bayesian P: subjective (personalistic) degree 
of belief. (de Finetti, Savage)                                                     
P(constant of nature) and P(SUSY is true) exist for You. 
Shown to be basis for coherent personal decision-making.

• It is important to be able to work with either definition of P, and 
to know which one you are using!

*Of course they are still argued about, but to less practical effect, I think.
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P, Conditional P, and “Derivation” of Bayes’ Theorem

A B
Whole space

P(B) × P(A|B) = × =

P(A)  = P(B)  = 

P(A ∩ B) = 

P(B|A) = P(A|B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

⇒ P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, Stats in Theory, HCPSS 2018 15



“Bayes' rule is satisfying, convincing, and fun to use. 
But using Bayes' rule does not make one a Bayesian; 
always using it does, and that's where difficulties 
begin.”

Bob Cousins, Stats in Theory, HCPSS 2018 16

I’ll give a simple example for each definition of P.      
One of the sillier things one sometimes sees in HEP is 
the use of a frequentist example of Bayes’ Theorem as 
a foundational argument for “Bayesian” statistics.



Example of Bayes’ Theorem Using Frequentist P

A b-tagging method is developed and one measures:
P(btag | b-jet),                i.e., efficiency for tagging b’s
P(btag | not a b-jet),      i.e., efficiency for background
P(no btag | b-jet)           = 1 - P(btag | b-jet), 
P(no btag | not a b-jet) = 1 - P(btag | not a b-jet)

Question: Given a selection of jets tagged as b-jets, what 
fraction of them is b-jets?  I.e., what is P(b-jet | btag) ?
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Example of Bayes’ Theorem Using Frequentist P

A b-tagging method is developed and one measures:
P(btag | b-jet),                i.e., efficiency for tagging b’s
P(btag | not a b-jet),      i.e., efficiency for background
P(no btag | b-jet)           = 1 - P(btag | b-jet), 
P(no btag | not a b-jet) = 1 - P(btag | not a b-jet)

Question: Given a selection of jets tagged as b-jets, what 
fraction of them is b-jets?  I.e., what is P(b-jet | btag) ?

Answer: Cannot be determined from the given information!
Need in addition: P(b-jet), the true fraction of all jets that are     
b-jets.  Then Bayes’ Thm inverts the conditionality:

P(b-jet | btag) ∝ P(btag |b-jet) P(b-jet)
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Example of Bayes’ Theorem Using Frequentist P
(cont.)

In HEP, as noted,
P(btag | b-jet) is called the  efficiency for tagging b’s.
Meanwhile
P(b-jet | btag) is often called the purity of a sample of b-tagged 
jets.

As this is a pretty “easy” distinction, it is helpful to keep it in 
mind when one encounters cases where it is perhaps tempting 
to make the logical error of equating P(A|B) and P(B|A).
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Example of Bayes’ Theorem Using Bayesian P
In a background-free experiment, a theorist uses a “model” to 

predict a signal with Poisson mean of 3 events. From Poisson 
formula we know
P(0 events | model true) = 30e-3/0! = 0.05
P(0 events | model false) = 1.0
P(>0 events | model true) = 0.95
P(>0 events | model false) = 0.0

The experiment is performed and zero events are observed.
Question: Given the result of the expt, what is the probability that 

the model is true? I.e., What is P(model true | 0 events) ?
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Example of Bayes’ Theorem Using Bayesian P
In a background-free experiment, a theorist uses a “model” to 

predict a signal with Poisson mean of 3 events. From Poisson 
formula we know
P(0 events | model true) = 30e-3/0! = 0.05
P(0 events | model false) = 1.0
P(>0 events | model true) = 0.95
P(>0 events | model false) = 0.0

The experiment is performed and zero events are observed.
Question: Given the result of the expt, what is the probability that 

the model is true? I.e., What is P(model true | 0 events) ?
Answer: Cannot be determined from the given information!                      

Need in addition: P(model true), the degree of belief in the 
model prior to the experiment.  Then Bayes’ Thm inverts the 
conditionality:

P(model true | 0 events) ∝ P(0 events | model true) P(model true)
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A Note re Decisions
Suppose that as a result of the previous experiment, your degree 
of belief in the model is P(model true | 0 events) = 99%, and you 
need to decide on an action (making a press release, or planning 
next experiment), based on the model being true.  
Question: What should you decide?
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A Note re Decisions
Suppose that as a result of the previous experiment, your degree 
of belief in the model is P(model true | 0 events) = 99%, and you 
need to decide on an action (making a press release, or planning 
next experiment), based on the model being true.  
Question: What should you decide?
Answer: Cannot be determined from the given information!    
Need in addition: 
The utility function (or its negative, the loss function), which 
quantifies the relative costs (to You) of 

– Type I error (declaring model false when it is true), and 
– Type II error (not declaring model false when it is false).
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A Note re Decisions (cont.)
Thus, Your decision, requires two subjective inputs: Your prior 
probabilities, and the relative costs to You of outcomes.
Statisticians often focus on decision-making.
In HEP, the tradition thus far is to communicate experimental 
results (well) short of formal decision calculations.  
It should become clear later in lectures: 
Frequentist (classical) “hypothesis testing” (especially with 
conventions like 95% C.L. or 5σ ) is not a complete theory of 
decision-making!
It is important to keep this in mind, since the “accept/reject” 
language of classical hypothesis testing (later in lectures) is too 
simplistic for “deciding” in important situations.
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Probability, Probability Density, Likelihood

These are key building blocks in both frequentist and Bayesian 
statistics, and it is crucial distinguish among them.
In the following we let x be an observed or measured quantity;      
sometimes we use n if the observation is integer-valued and we 
want to emphasize that.
A “(statistical) model” is an expression specifying probabilities 
or probability densities for observing x. 
We use µ for parameters (sometimes vector-valued) in the 
model.  (Statistical literature prefers θ.)
Then the most common examples in HEP:
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Probability, Probability Density, Likelihood (cont.)
• Binomial probability of non successes in ntot trials, each with 

binomial parameter ρ:

Bi(non | ntot, ρ) = ntot!
non! (ntot−non)! ρnon (1 − ρ)(n tot − non)

• Poisson probability P(n|µ) = µn exp(-µ)/n!

• Gaussian probability density function (pdf) p(x|µ,σ): 
p(x|µ,σ)dx is differential of probability dP.

In Poisson case, suppose n=3 is observed.                
Substituting observed value n=3 into P(n|µ) yields the
likelihood function

L(µ) = µ3 exp(-µ)/3!
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L(µ) = µ3e-µ/3! 

µ

µML = 3 

L(µ)

Probability, Probability Density, Likelihood (cont.)

Example likelihood function L(µ) = µ3 exp(-µ)/3!
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It is tempting to consider area 
under L, but L(µ) is not a 
probability density in µ:
Area under L is meaningless.

As we shall see, 
Likelihood Ratios L(µ1) /L(µ2)  
are useful and frequently used.



Notation reminder
x denotes observable(s)
More generally, x is any convenient or useful function of the 
observable(s), and is called a “statistic” or “test statistic”
µ denotes parameter(s)                                    
p(x|µ) is probability/pdf characterizing everything that 
determines the probabilities (densities) of the observations, 
from laws of physics to experiment setup and protocol
p(x|µ) is called “the statistical model”, or simply “the model”, by 
statisticians.
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Change of observable variable (“metric”) x in pdf p(x|µ) 
For pdf p(x|µ) and 1-to-1 change of variable (metric) from x to y(x),      
volume element modified by Jacobian. In 1D, p(y) |dy|  = p(x) |dx|. 

p(y(x)|µ) = p(x|µ) / |dy/dx|. 

Jacobian modifies probability density, guaranties that                
P( y(x1)< y < y(x2) )  =  P(x1 < x < x2 ), 

(or equivalent with decreasing y(x)),  i.e., guarantees that
Probabilities are invariant under change of variable x.
E.g.,  for x↔τ and y(x) ↔ Γ=1/τ, must have
P( τ ⊂ [τ1, τ2] )  =  P ( Γ ⊂ [1/τ2, 1/τ1] ) 

Mode of probability density is not invariant (so, e.g., criterion of 
maximum probability density is ill-defined).

Likelihood ratio L(µ1) /L(µ2) is invariant under change of variable x 
to y(x). (Jacobian in denominator cancels that in numerator).
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Probability Integral Transform
“…seems likely to be one of the most fruitful conceptions 

introduced into statistical theory in the last few years”   
− Egon Pearson (1938) commenting on his father’s work.

Given continuous x ∈ (a,b), and its pdf p(x), let

y(x) = ∫a
x p(x′) dx′ .

Then y ∈ (0,1) and easy to show that p(y) = 1 (uniform) for all y. (!)
So there always exists a metric y in which the pdf is uniform.  
Many issues become more clear (or trivial) after this 
transformation*. (If x is discrete, some complications.)

Bob Cousins, Stats in Theory, HCPSS 2018 33



Change of parameter µ in pdf p(x|µ) 

The pdf for x given parameter µ=3 is the same as 
the pdf for x given 1/µ=1/3, or given µ2=9, or given any specified 
function of µ. 
They all imply the same µ, and hence the same pdf for x.

In slightly confusing notation, that is what we mean by changing 
parameter from µ to f(µ), and saying that 

p(x|f(µ)) = p(x|µ).

Thus the likelihood L(µ) is invariant (!) under reparametrization 
from parameter µ to f(µ):

L( f(µ) ) = L(µ).

This reinforces the fact that L(µ) is not a pdf in µ.
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Bayes’ Theorem Generalized to Probability Densities
Recall P(B|A) ∝ P(A|B) P(B). For Bayesian P, continuous 

parameters such as µ are random variables with pdf’s.
Let pdf p(µ|x) be the conditional pdf for parameter µ, given data x.  

As usual p(x|µ) is the conditional pdf for data x, given 
parameter µ. Then Bayes’ Thm becomes

p(µ|x) ∝ p(x|µ) p(µ).
Substituting in a particular set of observed data, x0 :
p(µ|x0) ∝ p(x0|µ) p(µ).  
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Bayes’ Theorem Generalized to Probability Densities
p(µ|x0) ∝ p(x0|µ) p(µ).  
Recognizing the likelihood (variously written as L(x0|µ) , L(µ), or 

unfortunately even L(µ|x0) ), then

p(µ|x0) ∝ L(x0|µ) p(µ), where:
p(µ|x0)  = posterior pdf for µ, given the results of this expt
L(x0|µ)  = Likelihood function of µ from the experiment
p(µ) = prior pdf for µ, before applying the results of this expt

Note! There is one (and only one) probability density in µ on each 
side of the eqn, consistent with L(x0|µ) not being a density in µ.
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Quick intro to “Bayesian” analysis
All equations up until now are true for any definition of 
probability P that obeys the axioms, including frequentist P, as 
long as the probabilities exist (for example if µ is sampled from 
an ensemble with known “prior” pdf).
The word “Bayesian” refers not to these equations, but to the 
choice of definition of P as personal subjective degree of belief.
Bayesian P applies to hypotheses and constants of nature  
(frequentist P does not), so many Bayesian-only applications.
Since Bayesian estimation requires a prior pdf, big issues in 
Bayesian estimation include:
• What prior pdf to use, and how sensitive is the result?
• How to interpret posterior probability if the prior pdf is not 

Your personal subjective belief?

Frequentist tools can be highly relevant to both questions!
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Use of Bayesian Posterior pdf p(µ|x0) 
Point estimation: Some Bayesians use the posterior mode (aka 
maximum posterior density) as the point estimate of µ (though 
metric-dependent), others  say point estimation is misguided. 
Since the Jacobian moves the mode around under change of 
parameter (say from lifetime τ to decay rate Γ=1/τ), care must 
be used to interpret it. (Posterior median can be used in 1D.)
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Use of Bayesian Posterior pdf p(µ|x0) 
Point estimation: Some Bayesians use the posterior mode (aka 
maximum posterior density) as the point estimate of µ (though 
metric-dependent), others  say point estimation is misguided. 
Since the Jacobian moves the mode around under change of 
parameter (say from lifetime τ to decay rate Γ=1/τ), care must 
be used to interpret it. (Posterior median can be used in 1D.)
Interval estimation: Credibility of µ being in any interval [µ1,µ2] 
can be calculated by integrating p(µ|x0) over the interval.
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Use of Bayesian Posterior pdf p(µ|x0) 
Point estimation: Some Bayesians use the posterior mode (aka 
maximum posterior density) as the point estimate of µ (though 
metric-dependent), others  say point estimation is misguided. 
Since the Jacobian moves the mode around under change of 
parameter (say from lifetime τ to decay rate Γ=1/τ), care must 
be used to interpret it. (Posterior median can be used in 1D.)
Interval estimation: Credibility of µ being in any interval [µ1,µ2] 
can be calculated by integrating p(µ|x0) over the interval.
Hypothesis testing: Unlike frequentist statistics, testing 
credibility of whether or not µ equals a particular value µ0 is not
performed using by examining intervals.* 
One starts over with Bayesian model selection (later topic). 

Bob Cousins, Stats in Theory, HCPSS 2018 41
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Use of Bayesian Posterior pdf p(µ|x0) 
Point estimation: Some Bayesians use the posterior mode (aka 
maximum posterior density) as the point estimate of µ (though 
metric-dependent), others  say point estimation is misguided. 
Since the Jacobian moves the mode around under change of 
parameter (say from lifetime τ to decay rate Γ=1/τ), care must 
be used to interpret it. (Posterior median can be used in 1D.)
Interval estimation: Credibility of µ being in any interval [µ1,µ2] 
can be calculated by integrating p(µ|x0) over the interval.
Hypothesis testing: Unlike frequentist statistics, testing 
credibility of whether or not µ equals a particular value µ0 is not
performed using by examining intervals.* 
One starts over with Bayesian model selection (later topic). 
Decision making: All Decisions about µ require not only p(µ|x0) 
but also further input: the utility function.
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Can “subjective” be taken out of “degree of belief”?
There are compelling arguments (Savage, De Finetti et al.) that 
Bayesian reasoning with personal subjective P is the uniquely 
“coherent” way (with technical definition of coherent) of 
updating personal beliefs upon obtaining new data.
The huge question is: can the Bayesian formalism be used by 
scientists to report the results of their experiments in an 
“objective” way (however one defines “objective”), and does any 
of the glow of coherence remain when subjective P is replaced 
by something else?
An idea vigorously pursued by physicist Harold Jeffreys in mid-
20th century: 
Can one define a prior p(µ) that contains as little information as 
possible?
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“Uniform Prior” Requires a Choice of Metric
The really really thoughtless idea*, recognized by Jeffreys as 
such, but dismayingly common in HEP: 
Just choose prior p(µ) uniform in whatever metric you happen 
to be using!  (UGH!)
Recall that the probability integral transform always allows one 
to find a metric in which p is uniform (for continuous µ).
Thus the question “What is the prior pdf p(µ)?” is equivalent to 
the question, “For what function y(µ) is p(y) uniform?”
The choice y(u) = u needs to be justified. 
(It does not represent ignorance!)

*despite having a fancy name,  Laplace’s Principle of Insufficient Reason
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Jeffreys’s Choice of Metric for Uniform Prior
Harold Jeffreys answered the question using a prior uniform in 
a metric related to the Fisher information, calculated from 
curvature of the log-likelihood function averaged over sample 
space.  Jeffreys priors:

Poisson signal mean µ, no background:         p(µ) = 1/sqrt(µ)
Poisson signal mean µ, mean background b: p(µ) = 1/sqrt(µ+b)
Unbounded mean µ of Gaussian: p(µ) = 1
RMS deviation of a Gaussian when mean fixed: p(σ) = 1/σ
Binomial parameter ρ, 0 ≤ ρ ≤1 : p(ρ) = ρ-1/2(1 - ρ)-1/2 = Beta(1/2,1/2)
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What to call such Non-Subjective Priors?
• “Noninformative priors”? “Uninformative priors”? Traditional 

among statisticians, even though they know it is misnomer. 
(You should too!)

• “Vague priors”? “Ignorance priors”? “Default priors”?
• “Reference priors”? (Unfortunately also refers to a specific 

recipe of Bernardo)
• “Objective priors”?  Despite the highly questionable use of 

the word, Jeffreys prior and its generalization by Bernardo 
and Berger are now widely referred to as “objective priors”.

• Kass and Wasserman J.  Amer. Stat. Assn. 91 1343 (1996)
give the best (neutral) name in my opinion:                               
Priors selected by “formal rules”.
– Required reading for anyone using Bayesian methods!

Whatever the name, prior in one metric determines it in all other 
metrics: be careful in choice of metric in which it is uniform!
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Whatever you call non-subjective priors,                  
they do not represent ignorance!

Dennis V. Lindley Stat. Sci 5 85 (1990), “the mistake is to think 
of them [Jeffreys priors or Bernardo/Berger’s reference 
priors] as representing ignorance”

This Lindley quote is emphasized by Christian Robert, The 
Bayesian Choice, (2007) p. 29.

Jose Bernardo: “[With non-subjective priors,] The contribution 
of the data in constructing the posterior of interest should be 
“dominant”. Note that this does not mean that a non-
subjective prior is a mathematical description of 
“ignorance”. Any prior reflects some form of knowledge.”

Nonetheless, Berger (1985, p. 90) argues that Bayesian analysis 
with noninformative priors (older name for objective priors) 
such as Jeffreys and Barnardo/Berger “is the single most 
powerful method of statistical analysis, in the sense of being 
the ad hoc method most likely to yield a sensible answer for 
a given investment of effort”.  
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Priors in high dimensions

Is there a sort of informational phase space which can lead us 
to a sort of probability Dalitz plot? I.e., the desire is that 
structure in the posterior pdf represents information in the 
data, not the effect of Jacobians.  Notoriously hard problem!
Be careful: Uniform priors push the probability away from the 
origin to the boundary! (Volume element in 3D goes as r2dr.) 
State of the art for “objective” priors may be “reference priors” 
of Bernardo and Berger, but multi-D tools have been lacking.
Subjective priors also very difficult to construct in high 
dimensions: human intuition is poor.

• Subjective Bayesian Michael Goldstein: “meaningful prior 
specification of beliefs in probabilistic form over very 
large possibility spaces is very difficult and may lead to a 
lot of arbitrariness in the specification”.
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“Perhaps the most important general lesson 
is that the facile use of what appear to be 
uninformative priors is a dangerous 
practice in high dimensions.”
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Sir David Cox at PhyStat-LHC 2007
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Currently in HEP, the main application is #5.
In particular, for upper limits we use uniform prior for 
Poisson mean for frequentist reasons (See my AJP 
paper, http://aapt.scitation.org/doi/10.1119/1.17901 .)
Unfortunately some in HEP have also added a 6th:

http://aapt.scitation.org/doi/10.1119/1.17901


Cox’s list, as I have seen it augmented in HEP

Six

• Priors uniform in arbitrary variables, or in 
“the parameter of interest” (UGH!).  This has no               
justification in modern subjective or objective 
Bayesian theory.
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Sensitivity Analysis
Since a Bayesian result depends on the prior probabilities, 
which are either personalistic or with elements of arbitrariness, 
it is widely recommended by Bayesian statisticians to study the 
sensitivity of the result to varying the prior.
I think too little emphasis to this is given by Bayesian 
advocates in HEP.  
See backup slides for quotes from objective and subjective 
Bayesians.
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Bayesian Must-Read for HEP/Astro/Cosmo (incl discussion!)

Robert E. Kass and Larry Wasserman, “The Selection of Prior 
Distributions by Formal Rules,” J. Amer. Stat. Assoc.  91 
1343 (1996).

Telba Z. Irony and Nozer D. Singpurwalla, “Non-informative 
priors do not exist: A dialogue with Jose M. Bernardo,” J. 
Statistical Planning and Inference 65 159 (1997).

James Berger, “The Case for Objective Bayesian Analysis,” 
Bayesian Analysis 1 385 (2006)

Michael Goldstein, “Subjective Bayesian Analysis: Principles 
and Practice,” Bayesian Analysis 1 403 (2006)

J.O. Berger and L.R. Pericchi,  “Objective Bayesian Methods for 
Model Selection: Introduction and Comparison,” in  Model 
Selection, Inst. of Mathematical Statistics Lecture Notes-
Monograph Series, ed. P. Lahiri, vol 38 (2001) pp .135-207
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Memorable Quotes Therein from Jim Berger

Bob Cousins, Stats in Theory, HCPSS 2018 57

“The Case for Objective Bayesian Analysis,” Bayesian Analysis 1.  See pp. 397, 459.

***



Memorable Quotes Therein from Jim Berger
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“The Case for Objective Bayesian Analysis,” Bayesian Analysis 1.  See pp. 397, 459.
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Pseudo-Bayes analyses pop up from time to time in HEP.    
Flat priors, etc. (The worst are in Model Selection.)              
See my Comment at https://arxiv.org/abs/0807.1330 and my         
“pseudo-Bayes detection” slides 62-68 at Tokyo PhyStat-nu, 
http://indico.ipmu.jp/indico/event/82/session/9/contribution/16/material/slides/0.pdf .

An excellent discussion by Harrison Prosper is in Ch. 12 of 
Data Analysis in High Energy Physics, Ed. By O. Behnke et al.

https://arxiv.org/abs/0807.1330
http://indico.ipmu.jp/indico/event/82/session/9/contribution/16/material/slides/0.pdf


What can be computed without using a prior,              
with only the frequentist definition of P?

Not P(constant of nature is in some specific interval | data) 
Not P(SUSY is true | data) 
Not P(SM is false | data) 
Rather:
1) Confidence Intervals for constants of nature, parameter 

values, as defined in the 1930’s by Jerzy Neyman. 
Statements are made about probabilities in ensembles of 
intervals (fraction containing unknown true value)

2) Likelihood ratios, the basis for a large set of techniques for 
point estimation, interval estimation, and hypothesis testing.

Both can be constructed using the frequentist definition of P.
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Confidence Intervals
“Confidence intervals”, and this phrase to describe them, were 
invented by Jerzy Neyman in 1934-37.  Statisticians mean 
Neyman’s intervals (or an approximation) when they say 
“confidence interval”.  In HEP the language is a little loose.
I highly recommend using “confidence interval” (and 
“confidence regions” when multi-D) only to describe intervals 
and regions corresponding to Neyman’s construction, 
described below, or by recipes of any origin that yield good 
approximations thereof.
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Basic notions of confidence intervals
Basic idea in two sentences:

Given the model p(x|µ) and the observed value x0, for what values 
of µ is x0 an “extreme” value of x?  
Include in the confidence interval [µ1,µ2] those values of µ for 
which x0 is not “extreme”.

Bob Cousins, Stats in Theory, HCPSS 2018 61



Basic notions of confidence intervals
Basic idea in two sentences:

Given the model p(x|µ) and the observed value x0, for what values 
of µ is x0 an “extreme” value of x?  
Include in the confidence interval [µ1,µ2] those values of µ for 
which x0 is not “extreme”.

To be well-defined, the first point needs to be supplemented:

1) In order to define “extreme”, one needs to choose an ordering 
principle for x applicable to each µ: high rank means not extreme.

2) Need also to specify what fraction of values of x are not 
considered extreme.
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Some common ordering choices in 1D (when p(x|µ) is such that 
higher µ implies higher average x):
1. Order x from largest to smallest.                                                 

So smallest values of x are most extreme.                            
Given x0, the confidence interval containing µ for which x0 is 
not extreme will typically not contain largest values of µ.   
Leads to confidence intervals known as upper limits on µ.

2. Order x from smallest to largest.  Leads to lower limits on µ. 
3. Order x using central quantiles of p(x|µ), with the quantiles 

shorter in x (least integrated probability of x) containing 
higher-ranked x, with lower-ranked x added as the central 
quantile gets longer. Gives central confidence intervals for µ.

N.B. These three apply only when x is 1D. 

(4th ordering, likelihood ratio used by F-C, still to come.)
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Basic notions of confidence intervals (cont.)



Basic notions of confidence intervals (cont.)
Given model p(x|µ) and ordering of x, one chooses a fraction of 
highest-ranked values of x that are not considered as “extreme”.
This fraction is called the confidence level (C.L.), say 68% or 95%.
We also define α = 1 – C.L., the lower-ranked, “extreme” fraction.

The confidence interval [µ1,µ2] contains those values of µ for 
which x0 is not “extreme” at the chosen C.L., given the ordering.

E.g., at 68% C.L., [µ1,µ2] contains those µ for which x0 is in the 
highest-ranked (least extreme) 68% values of x.*

*In this talk, 68% is more precisely 68.27%; 84% is 84.13%; etc.
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Basic notions of confidence intervals (cont.)
The endpoints of central confidence 
intervals at C.L. are the same as 
upper/lower limits with 1 – (1 – C.L.)/2.  
E.g.: 
84% C.L. upper limit µ2 excludes µ for 
which x0 is in the lowest 16% values of x.
84% C.L. lower limit µ1 excludes µ for 
which x0 is in the highest 16% values of x. 
Then [µ1,µ2] includes µ for which x0 is in 
the central 68% quantile of x values.  It is a 
68% C.L. central confidence interval (!)
Examples follow, first with continuous x, 
then with discrete x.
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µ2

µ1 µ1

µ2
84% C.L. UL

84% C.L. LL

68% C.L.



Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ
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Plot of p(x|µ,σ) with µ=10.0,  σ = 2.0 :

p(x|µ,σ)

µ

x

p(x|µ,σ) =
𝟏𝟏
𝟐𝟐� 𝟐𝟐

𝒆𝒆− x−µ 𝟐𝟐/2σ𝟐𝟐

σ(µ) = (0.2) µ
µ=10.0



Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ

Suppose µ is unknown, and x0 = 10.0 is 
observed. What can one say about µ ?
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Plot of p(x|µ,σ) with µ=10.0,  σ = 2.0 :

p(x|µ,σ)

µ

x

x0 = 10.0

p(x|µ,σ) =
𝟏𝟏
𝟐𝟐� 𝟐𝟐

𝒆𝒆− x−µ 𝟐𝟐/2σ𝟐𝟐

σ(µ) = (0.2) µ
µ=10.0



Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ

Suppose x0 = 10.0 is observed.

Plot of L (µ) for observed x0 = 10. : 
µML= 9.63

What is confidence interval for µ?
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L (µ)

p(x|µ,σ)

µ

x

x0 = 10.0L (µ) =
𝟏𝟏

𝟐𝟐π(𝟎𝟎.𝟐𝟐µ)𝟐𝟐
𝒆𝒆− 𝒙𝒙𝟎𝟎−µ 𝟐𝟐/𝟐𝟐(𝟎𝟎.𝟐𝟐µ)𝟐𝟐

µ=10.0
Plot of p(x|µ,σ) with µ=10.0,  σ = 2.0 :

p(x|µ,σ) =
𝟏𝟏
𝟐𝟐� 𝟐𝟐

𝒆𝒆− x−µ 𝟐𝟐/2σ𝟐𝟐

σ(µ) = (0.2) µ
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Find µ1 such that 84% of p(x|µ1,σ=0.2µ1) is 
below x0 = 10.0; 16% of prob is above.  
Solve: µ1 = 8.33. 
[µ1,∞] is 84% C.L. confidence interval
µ1 is 84% C.L. lower limit for µ.

µ1 = 8.33
σ = 1.67

84% 16%
x

Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ
Observed x0 = 10.0.

x0=10
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Find µ1 such that 84% of p(x|µ1,σ=0.2µ1) is 
below x0 = 10.0; 16% of prob is above.  
Solve: µ1 = 8.33. 
[µ1,∞] is 84% C.L. confidence interval
µ1 is 84% C.L. lower limit for µ.

Find µ2 such that 84% of p(x|µ2,σ=0.2µ2) is 
above x0 = 10.0; 16% of prob is below. 
Solve: µ2 = 12.5.
[− ∞,µ2] is 84% C.L. confidence interval
µ2 is 84% C.L. upper limit for µ. 

Then 68% C.L. central confidence interval is 
[µ1,µ2] = [8.33,12.5].

µ1 = 8.33
σ = 1.67

µ2 = 12.5
σ = 2.5

84%

84%

16%

16%

x

x

Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ
Observed x0 = 10.0.

x0=10



Bob Cousins, Stats in Theory, HCPSS 2018 71

So the 68% C.L. central confidence interval is [8.33,12.52].
This is “exact”.  Follows reasoning of E.B. Wilson, JASA 1927!

Note difference from (“Wald-like”) reasoning that proceeds as: 
1) For x0 = 10.0, minimum-χ2 point estimate of µ is �µ = 10.0.
2) Then estimate �σ = 0.2 × �µ = 2.0.
3) Then �µ ± �σ yields interval [8.0,12.0].

For (“exact”) confidence intervals, the reasoning must always 
involve probabilities for x calculated considering particular 
possible true values of parameters, as on previous slide!
Clearly the validity of the Wald-like approximate reasoning 
depends on how much σ(µ) changes for µ relevant to problem at 
hand.  Beware!

Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ
Observed x0 = 10.0.



Recall Bi(non | ntot, ρ) for binomial probability of non successes 
in ntot trials, each with binomial parameter ρ:

Bi(non | ntot, ρ) = ntot!
non! (ntot−non)! ρnon (1 − ρ)(n tot − non)

In repeated trials, non has mean ntot ρ and

rms deviation ntot ρ (1 − ρ)

With observed successes non,  the M.L. point estimate �ρ of ρ is
(next slide)

�ρ = non / ntot .

What confidence interval [ρ1,ρ2] should we report for ρ?
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Confidence intervals for binomial parameter ρ:
Directly relevant to efficiency calculation in HEP
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Suppose non=3 successes in ntot=10 trials.  

Let’s find “exact” 68% C.L.* central confidence interval [ρ1,ρ2].
Recall shortcut above for central intervals:
Find lower limit ρ1 with C.L. = 1 – (1 – 68%)/2. = 84%
Find upper limit ρ2 with C.L. = 84%
Then [ρ1, ρ2]  is 68% C.L. central confidence interval

*Recall in this talk, 68% is more precisely 68.27; 84% is 84.13%; etc.
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Confidence intervals for binomial ρ (cont.)

73

L (ρ)

ρ

–2 ln L (ρ)

ρ

�ρML= 3/10



non = 3 , ntot=10. 
Find ρ1 such that
Bi(non < 3 | ρ1)  = 84%
Bi(non ≥ 3 | ρ1)  = 16%
(lower limit at 84% C.L.)
Solve: ρ1 = 0.142 
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84%

Bi(non| ρ1)
ρ1 = 0.142 

84%

non

16%



non = 3 , ntot=10. 
Find ρ1 such that
Bi(non < 3 | ρ1)  = 84%
Bi(non ≥ 3 | ρ1)  = 16%
(lower limit at 84% C.L.)
Solve: ρ1 = 0.142 

And find ρ2 such that 
Bi(non > 3 | ρ2)  = 84%
Bi(non ≤ 3 | ρ2)  = 16%
(upper limit at 84% C.L.)
Solve: ρ2 = 0.508

Then [ρ1,ρ2] = (0.142, 0.508)  
is central confidence interval 
with 68% C.L.  Same as 
Clopper and Pearson (1934)
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84%

Bi(non| ρ1)
ρ1 = 0.142 

Bi(non| ρ2)
ρ2 = 0.508 

84%

non

non

16%

16%

For Poisson example, see Fig. 3a,b; R. Cousins, Am. J. Phys. 63 398 (1995) DOI: 10.1119/1.17901
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In HEP, such Clopper-Pearson intervals are the 
standard for a binomial parameter

76

In Particle Data Group’s Review of Particle Physics since 2002. 
Many tables and online calculators for C-P exist, e.g., 
http://statpages.org/confint.html . 
But discreteness of x leads to an issue: C-P is criticized by 
some as “wastefully conservative” – see CHT paper below.
For a comprehensive review of both central and non-central 
confidence intervals for a binomial parameter and for the ratio 
of Poisson means, see Cousins, Hyme, and Tucker, 
http://arxiv.org/abs/0905.3831 . Many  are implemented in 
https://root.cern.ch/doc/master/classTEfficiency.html .

For related construction of upper/lower limits and central 
interval for Poisson mean, see R. Cousins, Am. J. Phys. 63 398 (1995)

http://statpages.org/confint.html
http://arxiv.org/abs/0905.3831
https://root.cern.ch/doc/master/classTEfficiency.html


For decades, issues with upper limits and central confidence 
intervals have been discussed in prototype problems in HEP:

1. Gaussian measurement resolution near a physical boundary 
(e.g. neutrino mass-squared is non-negative)

2. Poisson signal mean measurement when observed number of 
events is less than mean expected background (so naïve 
“background-subtracted” cross section is negative)

Many ideas put forward, PDG settled on three.  Some history: 
http://www.physics.ucla.edu/~cousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf

Today, I mostly stick to frequentist confidence intervals in this 
situation.
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Issues for upper-lower limits and central conf. ints.

http://www.physics.ucla.edu/%7Ecousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf


Beyond upper/lower limits and central confidence intervals

More general choices for ordering x in p(x|µ):

• For each µ, order x0 using likelihood ratio L(x0|µ) / L(x0|µbest fit).
Advocated in HEP by Feldman and Cousins in 1998 (and in 
Kendall and Stuart long before and since).                                       
Applicable in both 1D and multi-D for x.

N.B. Recall that likelihood ratios as in F-C are independent of 
metric in x since Jacobian cancels.

Bob Cousins, Stats in Theory, HCPSS 2018 81



Neyman’s Construction of Confidence Intervals
The general method for constructing 
“confidence intervals”, and the name,
were invented by Jerzy Neyman in 1934-37. 
The next few slides give basic outline.
It takes a bit of time to sink in – given how often 
confidence intervals are misinterpreted, the argument is 
perhaps a bit too ingenious.
In particular, you should understand that the confidence 
level does not tell you “how confident you are that the 
unknown true value is in the specific interval you report” –
only a subjective Bayesian credible interval has that 
property!
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Figure from G. Feldman, R Cousins, Phys Rev D57 3873 (1998) 

Neyman’s Construction of Confidence Intervals
Given p(x|µ) from a model:
For each value of µ , one 
draws a horizontal acceptance 
interval [x1,x2] such that 
p(x ∈ [x1,x2] | µ ) =  C.L. = 1 - α.  
(“Ordering principle” for x is 
used to well-define.)



Given p(x|µ) from a model:
For each value of µ , one 
draws a horizontal acceptance 
interval [x1,x2] such that 
p(x ∈ [x1,x2] | µ ) =  C.L. = 1 - α.  
(“Ordering principle” for x is 
used to well-define.)

Upon observing x, obtaining 
the value x0, one draws the 
vertical line through x0.  
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Figure from G. Feldman, R Cousins, Phys Rev D57 3873 (1998) 

Neyman’s Construction of Confidence Intervals

x0



Given p(x|µ) from a model:
For each value of µ , one 
draws a horizontal acceptance 
interval [x1,x2] such that 
p(x ∈ [x1,x2] | µ ) =  C.L. = 1 - α.  
(“Ordering principle” for x is 
used to well-define.)

Upon observing x, obtaining 
the value x0, one draws the 
vertical line through x0.  

Bob Cousins, Stats in Theory, HCPSS 2018 86
Figure from G. Feldman, R Cousins, Phys Rev D57 3873 (1998) 

Neyman’s Construction of Confidence Intervals

x0

µ1

µ2

The vertical confidence interval [µ1, µ2] with Confidence Level  
C.L. = 1 - α is the union of all values of µ for which the corres-
ponding acceptance interval is intercepted by the vertical line.



Important note: x and µ need not 
have the same range, units, or 
(in generalization to higher 
dimensions) dimensionality!

I think it is much easier to avoid confusion when x and µ are 
qualitatively different. 
Louis Lyons gives the example where x is the flux of solar 
neutrinos and µ is the temperature at the center of the sun. 
I like examples where x and µ have different dimensions:
Neyman’s original paper has 2D observation space and 1D 
parameter space – see backup.
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Famous confusion re Gaussian p(x|µ) where µ is mass ≥ 0
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It is crucial to distinguish between the data x, which can be 
negative (no problem), and the mass parameter µ, for which 
negative values do not exist in the model.  
I.e., for mass µ <0,  p(x|µ) does not exist:  You would not know 
how to simulate the physics of detector response for mass < 0.
Constraint µ ≥ 0 has nothing to do with a Bayesian prior for µ !!!
It’s in the model (and hence in L(µ)).



Famous confusion re Gaussian p(x|µ) where µ is mass ≥ 0
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It is crucial to distinguish between the data x, which can be 
negative (no problem), and the mass parameter µ, for which 
negative values do not exist in the model.  
I.e., for mass µ <0,  p(x|µ) does not exist:  You would not know 
how to simulate the physics of detector response for mass < 0.
Constraint µ ≥ 0 has nothing to do with a Bayesian prior for µ !!!
It’s in the model (and hence in L(µ)).
The confusion is encouraged since 
we often refer to x as the “measured 
value of µ”, and say that x<0 is 
“unphysical” – bad habits!
A proper Neyman construction 
graph has x of both signs but only 
non-negative µ ≥ 0.  Example:
Construction on right is LR ordering 
advocated by Feldman-Cousins



Confidence Intervals and Coverage
Recall: how is a vector defined in abstract math class?
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Confidence Intervals and Coverage
Recall: how is a vector defined in abstract math class?
In math, one defines a vector space as a set with certain 
properties, and then the definition of a vector is “an element of 
a vector space”.                                                                               
(A vector is not defined in isolation.)
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Confidence Intervals and Coverage
Recall: how is a vector defined in abstract math class?
In math, one defines a vector space as a set with certain 
properties, and then the definition of a vector is “an element of 
a vector space”.                                                                               
(A vector is not defined in isolation.)

Similarly, whether constructed in practice by Neyman’s
construction or some other technique, a confidence interval is 
defined to be “a element of a confidence set”, where the 
confidence set is a set of intervals defined to have the property 
of frequentist coverage under repeated sampling:
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Confidence Intervals and Coverage (cont.)
Let µt be the unknown true value of µ. In repeated experiments, 
confidence intervals will have different endpoints [µ1, µ2], since 
the endpoints are functions of the randomly sampled x. 
A little thought* will convince you that a fraction C.L. = 1 – α of 
intervals obtained by Neyman’s construction will contain 
(“cover”) the fixed but unknown µt . I.e.,  
P(µt ∈ [µ1, µ2])  =  C.L. = 1 – α.  (Definition of coverage)
In this (frequentist) equation, µt is fixed and unknown.               
The endpoints µ1,µ2 are the random variables (!). 
Coverage is a property of the set of confidence intervals, not of 
any one interval.

* For µt , the probability that x0 is in its acceptance region is C.L., by 
construction.  For those x0’s, the vertical line will intercept µt’s 
acceptance region, and so µt be will be put into the confidence interval.
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Confidence Intervals and Coverage (cont.)
P(µt ∈ [µ1, µ2])  =  C.L. = 1 – α.  (Definition of coverage)

One of the complaints about confidence intervals is that the 
consumer often forgets (if he or she ever knew) that                  
the random variables in this equation are µ1 and µ2, and not µt , 
and that coverage is a property of the set, not of an individual 
interval!                                                                                        
Please don’t forget!
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Confidence Intervals and Coverage (cont.)
P(µt ∈ [µ1, µ2])  =  C.L. = 1 – α.  (Definition of coverage)

One of the complaints about confidence intervals is that the 
consumer often forgets (if he or she ever knew) that                  
the random variables in this equation are µ1 and µ2, and not µt , 
and that coverage is a property of the set, not of an individual 
interval!                                                                                        
Please don’t forget!
A lot of confusion might have been avoided if Neyman had 
chosen the names “coverage intervals” and “coverage level”! 

Maybe we can have a summit meeting treaty where frequentists 
stop saying “confidence” and Bayesians stop saying 
“noninformative”!
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Classical Hypothesis Testing
At this point, we set aside confidence intervals for the moment 
and consider from the beginning the nominally different topic of 
hypothesis testing.
In fact we will soon find that in frequentist statistics, certain 
hypothesis tests will take us immediately back to confidence 
intervals.  But first we consider the more general framework.
Frequentist hypothesis testing, often called “classical” 
hypothesis testing, was developed by R.A. Fisher in unfriendly 
competition with J. Neyman and E. Pearson. Modern testing has 
a mix of ideas from both. 
In Neyman-Pearson hypothesis testing (James06), frame 
discussion in terms of null hypothesis H0 (e.g. S.M.), and an 
alternative H1 (e.g., some BSM model). 
Then p(x|µ) is different for H0 and H1 , either because parameter µ
is different,  or p() itself is different. 
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Classical Hypothesis Testing (cont.)
For null hypothesis H0, order possible observations x from least 
extreme to most extreme, using an ordering principle (which can 
depend on H1 as well). Choose a cutoff α (smallish number). 
Then “reject” H0 if observed x0 is in the most extreme fraction α
of observations x (generated under H0). Then by construction,

α = probability (with x generated according to H0) of rejecting 
H0 when it is true, i.e., false discovery claim (Type I error)
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Classical Hypothesis Testing (cont.)
For null hypothesis H0, order possible observations x from least 
extreme to most extreme, using an ordering principle (which can 
depend on H1 as well). Choose a cutoff α (smallish number). 
Then “reject” H0 if observed x0 is in the most extreme fraction α
of observations x (generated under H0). By construction:

α = probability (with x generated according to H0) of rejecting 
H0 when it is true, i.e., false discovery claim (Type I error)

To quantity the performance of this test if H1 is true, we define:
β = probability (with x generated according to H1) of accepting 

H0 when it is false, i.e., not claiming a discovery when there 
is one (Type II error)

Note: if alternative H1 is not specified, then β is not known and 
optimality cannot be well-defined. The test is then called a 
goodness-of-fit test of H0. See backup slides.
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There is tradeoff between Type I and Type 2 errors.        
Competing analysis methods can be compared by looking at 
graphs of β vs α at various µ, and at graphs of 1–β vs µ at various 
α (power function).

Similar to comparing b-tagging efficiency for signal and 
background. Equivalent to ROC curve.
See my writeup on arxiv for detailed example.
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Classical Hypothesis Testing (cont.)

James06, pp. 258, 262



Classical Hypothesis Testing (cont.)
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The N-P language of “accept” or “reject” H0 should not be 
mistaken for a complete theory of decision-making: 
Decision on whether to declare discovery requires 2 more inputs: 
1) Prior belief in H0 vs H1. (Can affect choice of α)
2) Cost of Type I error (false discovery claim) vs cost of Type II 

error (missed discovery). (Can also affect choice of α)
A one-size-fits-all criterion of α corresponding to 5σ is without 

foundation!

Where to live on the β vs α curve is 
a long discussion.  
(Even longer when considered as 
N events increases, so curve 
moves toward origin.)



Classical Hypothesis Testing: Simple Hypotheses
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In idealized cases, a hypothesis may have no floating (unfixed) 
parameters. 
N-P called such hypotheses simple, in contrast to composite
hypotheses that have unfixed parameters. 

Examples in HEP where both H0 and H1 are simple are rare, but 
we do have a few examples where the quantity of interest is 
simple in both hypotheses, and the role of unfixed parameters 
does not spoil the “simplicity”, e.g., H0 vs H1 being:

“jet originated from a quark” vs “jet originated from a gluon”
spin-1 vs spin-2 for a new resonance in µ+µ–

JP=0+ vs JP=0– for the Higgs-like boson



Simple Hypotheses Testing: Neyman-Pearson Lemma
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If Type I error probability α is specified in a test of 
simple hypothesis H0 against simple hypothesis H1 , then the 
Type II error probability β is minimized by ordering x according 
to the likelihood ratio λ =  L(x| H0) /L(x| H1). 
One finds cutoff λcut,α for that α and rejects H0 if λ ≤ λcut,α .

Conceptual proof in Second lecture of Kyle Cranmer, February 2009 
http://indico.cern.ch/event/48426/ . See also Stuart99, p. 176

Phil. Transactions of the 
Royal Society of London. Vol. 
231, (1933), pp. 289-337

The “lemma” applies only to a very special case: no nuisance 
parameters, not even undetermined parameters of interest!
But it has inspired many generalizations, and likelihood ratios 
are a oft-used component of both frequentist and Bayesian 
methods.

http://indico.cern.ch/event/48426/
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In contrast to two disjoint simple hypotheses, it is common in HEP 
for H0 to be nested in H1. 
This happens when there is an undetermined parameter µ in H1 , 
and H0 corresponds to a particular parameter value µ0
(e.g., zero, 1, or ∞). So consider: 
H0: µ = µ0 (the “point null”, or “sharp hypothesis”) vs
H1: µ ≠ µ0 (the “continuous alternative”).
Common examples: 
Signal strength µ of new physics: null µ0 = 0, alternative µ>0
H0 → γγ before discovery of this decay, µ = signal strength: 
null µ0 = 0, alternative µ>0
H0 → γγ after discovery of this decay: 
null µ0 = SM prediction, alternative any other µ ≠ µ0

Nested Hypothesis Testing
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H0: µ = µ0 (the “point null”, or “sharp hypothesis”) vs
H1: µ ≠ µ0 (the “continuous alternative”).
In classical/frequentist formalism (but not Bayesian formalism), the 
theory of such nested tests maps to that of confidence  intervals!

Nested Hypothesis Testing (cont.)



Nested Hypothesis Testing Duality
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Given an ordering: 
Test of µ=µ0 vs µ≠µ0 at significance level α
↔ Is µ0 in confidence interval for µ with C.L. = 1- α ?
“There is thus no need to derive optimum properties separately 
for tests and for intervals; there is a one-to-one correspondence 
between the problems as in the dictionary in Table 20.1” 
Stuart99, p. 175. [Table in backup slides]  E.g.,

α ↔ 1 – C.L.
Equal-tailed test ↔ central confidence intervals
One-tailed tests ↔ Upper/lower limits 

Use of the duality is referred to as “inverting a test” to obtain 
confidence intervals, and vice versa.



Nested Hypothesis Testing (cont.)

We emphasized a “new” ordering 
principle based on LR. While paper 
was “in proof”, Gary realized that 
“our” intervals were simply those 
obtained by “inverting” the LR 
hypothesis test. In fact it was all on 
1¼ pages of “Kendall and Stuart”, 
plus nuisance parameters!             
This was of course good ! 
It led to rapid inclusion in PDG RPP. 
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Phys. Rev. D57 3873 (1998):

Test µ=µ0 at α ↔ Is µ0 in conf. int. for µ with C.L. = 1- α



Above is all “pre-data” characterization of the test
How to characterize post-data? 

p-values and Z-values
In N-P theory, α is specified in advance.  
Suppose after obtaining data, you notice that with α=0.05 
previously specified, you reject H0, but with α=0.01 previously 
specified, you accept H0.  
In fact, you determine that with the data set in hand, H0 would be 
rejected for α ≥ 0.023.  This interesting value has a name:
After data are obtained, the p-value is the smallest value of α for 
which H0 would be rejected, had it been specified in advance.
This is numerically (if not philosophically) the same as definition  
used e.g. by Fisher and often taught: “p-value is probability under 
H0 of obtaining x as extreme or more extreme than observed x0.” 
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Interpreting p-values and Z-values
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It is crucial to realize that that value of α (0.023 in the example) 
was typically not specified in advance, so p-values do not
correspond to Type I error probs of experiments reporting them.      
In HEP, p-value typically converted to Z-value (unfortunately 
commonly called “the significance S”), equivalent number of 
Gaussian sigma.*  
E.g.., for one-tailed test, p = 2.87E-7 is Z = 5.
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Interpreting p-values and Z-values (cont.)
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Interpretation of p-values (and hence Z-values) is a long, 
contentious story – beware! 
Widely bashed.  I give some reasons why later.
I defend their use in HEP. See https://arxiv.org/abs/1310.3791.)

Whatever they are, p-values are not the probability that H0 is true!
– They are calculated assuming that H0 is true, so they can 

hardly tell you the probability that H0 is true!
– Calculation of “probability that H0 is true” requires prior(s)!

Please help educate press officers and journalists!                    
(and physicists) !
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Recall:  Likelihood L(µ) is invariant under reparametrization from 
µ to f(µ): L(µ)  =  L(f(µ)).

So likelihood ratios  L(µ1) /L(µ2) and log-likelihood 
differences lnL(µ1) - lnL(µ2) are also invariant.

After using maximum-likelihood method to obtain estimate �µ that 
maximizes either L(µ) or L(f(µ)), one can obtain a likelihood 
interval [µ1, µ2] as the union of all µ for which 

2lnL(�µ)  - 2lnL(µ)  ≤ Z2,  for Z real.
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Likelihood (Ratio) Intervals for 1 parameter



Likelihood (Ratio) Intervals for 1 parameter
Recall:  Likelihood L(µ) is invariant under reparametrization from 
µ to f(µ): L(µ)  =  L(f(µ)).

So likelihood ratios  L(µ1) /L(µ2) and log-likelihood 
differences lnL(µ1) - lnL(µ2) are also invariant.

After using maximum-likelihood method to obtain estimate �µ that 
maximizes either L(µ) or L(f(µ)), one can obtain a likelihood 
interval [µ1, µ2] as the union of all µ for which 

2lnL(�µ)  - 2lnL(µ)  ≤ Z2,  for Z real.
As sample size increases (under important regularity conditions) 
this interval approaches a central confidence interval with C.L. 
corresponding to ± Z Gaussian standard deviations
But!  Regularity conditions, in particular requirement that �µ not 
be on the boundary, need to be carefully checked.                   
E.g., if µ ≥ 0 on physical grounds, then �µ = 0 requires care.
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Recall: 
L (µ) for observed x0 = 10.0. 
µML= 9.63

Likelihood ratio interval for µ at 
approximate 68% C.L.:
[µ1, µ2] = [8.10, 11.9].

Compare with exact confidence 
interval [8.33,12.5].
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L (µ)

Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ
Observed x0 = 10.0. 

µ
∆ = 12

–2 ln L (µ)

µ



Recall example of non=3 
successes in ntot=10 trials.  

Min –2 ln L (ρ) = 2.64.
Obtain interval from 
–2 ln L (ρ) = 2.64 + 1 = 3.64

⇒ likelihood-ratio interval 
[ρ1,ρ2] = [0.17, 0.45]

Recall: 
Copper-Pearson [ρ1,ρ2] = [0.14, 0.51]
Wilson                 [ρ1,ρ2] = [0.18, 0.46]
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–2 ln L (ρ)

ρ

Binomial Likelihood-Ratio Interval example

∆ = 12
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Recall 3 methods of  interval construction for binomial param ρ

Bayesian and likelihood 
intervals: Bi(non | ntot , ρ)  
is evaluated only at     
observed non=3. 
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Recall 3 methods of  interval construction for binomial param ρ

Bayesian and likelihood 
intervals: Bi(non | ntot , ρ)  
is evaluated only at     
observed non=3. 

Confidence intervals 
use, in addition,  
probabilities for values 
of non not observed.

This distinction turns 
out to be a huge deal!



In both Bayesian methods and likelihood-ratio based methods, 
the probability (density) for obtaining the data at hand is used 
(via the likelihood function), but probabilities for obtaining 
other data are not used!
In contrast, in typical frequentist calculations (confidence 
intervals, p-values), one also uses probabilities of data that 
could have been observed but that was not observed.
The assertion that only the former is valid is captured by the 
Likelihood Principle*: 
If two experiments yield likelihood functions that are 
proportional, then Your inferences from the two experiments 
should be identical.

*There are various versions of the L.P.,  strong and weak forms etc. See Stuart99 and 
book by Berger and Wolpert.
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Likelihood Principle



Likelihood Principle (cont.)
L.P. is built into Bayesian inference (except e.g., when Jeffreys 
prior leads to violation).  
L.P. is violated by p-values and confidence intervals.
Jeffreys (Theory of Probability, 1961, p. 385) still seems to be 
unsurpassed in his ironic criticism of tail probabilities, which 
include probabilities of data more extreme than that observed:
“What the use of [the p-value] implies, therefore, is that a 
hypothesis that may be true may be rejected because it has not 
predicted observable results that have not occurred.”

Although practical experience indicates that the L.P. may be too 
restrictive, it is useful to keep in mind.  When frequentist results 
“make no sense” or “are unphysical”, in my experience the 
underlying reason can be traced to a bad violation of the L.P.
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Summary of Three Ways to Make Intervals
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Bayesian 
Credible

Frequentist 
Confidence 

Likelihood Ratio

Requires prior pdf? Yes No No

Obeys Likelihood
Principle?

Yes (exception re 
Jeffreys prior)

No Yes

Random variable in 
“P(µt ∈ [µ1, µ2])”:

µ t µ 1, µ 2 µ 1, µ 2

Coverage guaranteed? No Yes (but over-
coverage…)

No

Provides
P(parameter|data)?

Yes No No

Frequentist intervals map to frequentist hypothesis tests, as 
previously discussed.
Bayesian approach to hypothesis testing is also called model 
selection, and is a whole other “can of worms” (J.O. Berger).



68% intervals for Poisson mean with n=3 observed
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Frequentist intervals over-cover due to discreteness of n.

Adapted from R. Cousins,  Am. J. Phys. 63 398  (1995)



68% intervals for Poisson mean with n=3 observed
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Bayesian lower limits with 1/µ prior are identical to frequentist 
lower limits.

Adapted from R. Cousins,  Am. J. Phys. 63 398  (1995)



68% intervals for Poisson mean with n=3 observed

Bob Cousins, Stats in Theory, HCPSS 2018 138Adapted from R. Cousins,  Am. J. Phys. 63 398  (1995)

Bayesian upper limits with flat prior are identical to frequentist 
upper limits.

Since upper limits dominate our field, this is why flat prior for 
Poisson mean became so well established: it is probability 
matching prior for upper limits, and when background is 
added, becomes conservative.



Bayesian Hypothesis Testing  (Model Selection)
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Typically follows Ch. 5 of Harold Jeffreys’s book:
Bayes’s Theorem is applied to the models themselves after 
integrating out all parameters, including parameter of interest!

Presented too often as “logical” and therefore simple to use, 
with great benefits such as automatic “Occam’s razor”, etc.



Bayesian Hypothesis Testing  (Model Selection)
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Typically follows Ch. 5 of Harold Jeffreys’s book:
Bayes’s Theorem is applied to the models themselves after 
integrating out all parameters, including parameter of interest!

Presented too often as “logical” and therefore simple to use, 
with great benefits such as automatic “Occam’s razor”, etc.

In fact, it is full of subtleties. E.g., Jeffreys and followers use 
different priors for integrating out parameter in model selection 
than for same parameter in parameter estimation.

Here I will mainly just say: Beware!  There are posted/published 
applications HEP that are silly (by Bayesian standards).           
An example in PRL provoked me to write a Comment: 
https://arxiv.org/abs/0807.1330 .

https://arxiv.org/abs/0807.1330
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For a review and comparison to p-values in discovery of Higgs 
boson, see my paper:

“The Jeffreys-Lindley Paradox and Discovery Criteria in High 
Energy Physics” 

(Published in Synthese – long story) 
https://arxiv.org/abs/1310.3791 . 

Bayesian Hypothesis Testing  (Cont.)

https://arxiv.org/abs/1310.3791


1D parameter space, 2D observation space
Until now we have considered 1 parameter and 1 observation. 
Adding a second observation adds surprising subtleties.
As before, µ is parameter (often called θ by statisticians)
An experiment has two observations x1, x2 .  These could be:

– two samples from same p(x|µ), or 
– samples of two different quantities from joint density 

p(x1,x2 |µ) .

Neyman construction: 
For each µ, use an ordering principle on the sample space 
(x1,x2) to select an acceptance region A(µ) in the sample space 
(x1, x2) such that P((x1,x2) ∈ A(µ)) = C.L.
In fact this was the illustration in Neyman’s original paper.
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Original paper has one unknown parameter 
θ1 on vertical axis and horizontal planes for 
2D vectors of observables E = (x1,x2).

Prior to experiment, acceptance regions 
A(θ1) in E-space planes are determined for 
each θ1 (needs ordering principle) with 
P(E∈A(θ1)) = C.L.

E′ is data actually observed in expt.
Upon obtaining E′, confidence interval for 
θ1 consists of all values of θ1 for which E′ is 
in A(θ1).



Restricting the Sample Space Used by Frequentists
In Neyman’s construction in the 2D sample space (x1,x2), the 
probabilities P((x1,x2) ∈ A(µ)) associated with each acceptance 
region A(µ) are unconditional probabilities with respect to the 
“whole” sample space of all values of (x1,x2).
In contrast, Bayesian inference is based on a single point in this 
sample space, the observed (x1,x2), per the Likelihood Principle.
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Restricting the Sample Space Used by Frequentists
In Neyman’s construction in the 2D sample space (x1,x2), the 
probabilities P((x1,x2) ∈ A(µ)) associated with each acceptance 
region A(µ) are unconditional probabilities with respect to the 
“whole” sample space of all values of (x1,x2).
In contrast, Bayesian inference is based on a single point in this 
sample space, the observed (x1,x2), per the Likelihood Principle.
There can be a middle ground in frequentist inference, in which 
the probabilities P((x1,x2) ∈ A(µ)) are conditional probabilities 
conditioned on a function of (x1,x2), in effect restricting the 
sample space to a “recognizable subset” depending on the 
observed data.
The function of (x1,x2) used for conditional probabilities 
typically carries information on the uncertainty in the point 
estimate �µ, but no information on �µ itself: called an ancillary 
statistic.
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Restricting the Sample Space Used by Frequentists (cont.)
Restricting the sample space in this way is known as 
conditioning (on an ancillary).  Two famous examples:
1) A somewhat artificial example of Welch where the 

conditioning arises from mathematical structure
2) A more physical example of Cox where the argument for 

conditioning seems “obvious”
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Conditioning in HEP
A classic example is a measurement of the branching fraction of 
a particular decay mode when the total number of decays N can 
fluctuate because the experiment design is to run for a fixed 
length of time.  Then N is an ancillary statistic.
You perform an experiment and obtain N total decays, and then 
do a toy M.C. of repetitions of the experiment. Do you let N 
fluctuate, or do you fix it to the value observed? 
It may seem that the toy M.C. should include your complete
procedure, including fluctuations in N.
But the above arguments would point toward conditioning on 
the value of the ancillary statistic actually obtained. So your 
branching fraction measurement is binomial with trials N. 
(Originally discussed in HEP by F. James and M. Roos,         
Nucl. Phys. B 172 (1980) 475.  For more complete discussion, 
see Cousins, Hyme, Tucker, https://arxiv.org/abs/0905.3831 )
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Review: Conditioning and the Likelihood Principle
We have seen that unconditional frequentists compute 
probabilities with respect to the whole sample space.
Post-data, conditional frequentists try to refer to a relevant 
subset of the whole sample space (typically not easy).
We also saw that pure Bayesians refer only to the probability of 
the data observed (L.P.).  This is literally the ultimate extreme in 
conditioning, conditioning (in the continuous case) on a point 
of measure zero! (You can’t get any more “relevant”.)
This is why coverage is not built into Bayesian answers.
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(Finally!) More than One Parameter
Generalize to two parameters µ1 and µ2, true values unknown. 
Let data x be a multi-D vector, so the model is p(x|µ1,µ2).
Observed vector value is x0 .
First consider the desire to obtain a 2D confidence/credible  
region in the parameter space (µ1,µ2).  All three methods 
discussed for intervals handle this in a straightforward              
(in principle) generalization:

– Bayesian: put observed data vector x0 into p(x|µ1,µ2) to 
obtain the likelihood function L(µ1,µ2).  Multiply by prior 
pdf p(µ1,µ2) to obtain 2D posterior pdf p(µ1,µ2|x0) .            
Use posterior pdf to obtain credible regions, etc., in (µ1,µ2).
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(Finally!) More than One Parameter
Generalize to two parameters µ1 and µ2, true values unknown. 
Let data x be a multi-D vector, so the model is p(x|µ1,µ2).
Observed vector value is x0 .
First consider the desire to obtain a 2D confidence/credible  
region in the parameter space (µ1,µ2).  All three methods 
discussed for intervals handle this in a straightforward              
(in principle) generalization:

– Bayesian: put observed data vector x0 into p(x|µ1,µ2) to 
obtain the likelihood function L(µ1,µ2).  Multiply by prior 
pdf p(µ1,µ2) to obtain 2D posterior pdf p(µ1,µ2|x0) .            
Use posterior pdf to obtain credible regions, etc., in (µ1,µ2).

– Confidence intervals: perform Neyman construction:      
Find acceptance regions for x as a function of (µ1,µ2).     
The 2D confidence region is union of all (µ1,µ2) for which 
x0 is in acceptance region.
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(Finally!) More than One Parameter
Generalize to two parameters µ1 and µ2, true values unknown. 
Let data x be a multi-D vector, so the model is p(x|µ1,µ2).
Observed vector value is x0 .
First consider the desire to obtain a 2D confidence/credible  
region in the parameter space (µ1,µ2).  All three methods 
discussed for intervals handle this in a straightforward              
(in principle) generalization:

– Bayesian: put observed data vector x0 into p(x|µ1,µ2) to 
obtain the likelihood function L(µ1,µ2).  Multiply by prior 
pdf p(µ1,µ2) to obtain 2D posterior pdf p(µ1,µ2|x0) .            
Use posterior pdf to obtain credible regions, etc., in (µ1,µ2).

– Confidence intervals: perform Neyman construction:      
Find acceptance regions for x as a function of (µ1,µ2).     
The 2D confidence region is union of all (µ1,µ2) for which 
x0 is in acceptance region.

– Likelihood regions: recall 1D method 2lnL(�µ) - 2lnL(µ) ≤ Z2…
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Likelihood regions in ≥ 2D
Find global maximum of L(µ1,µ2), yielding point estimates (�µ1,�µ2).
Find contour bounded by 2∆lnL = 2lnL(�µ1,�µ2) − 2lnL(µ1,µ2) ≤ C, 
where C comes from Wilks’s Theorem, tabulated in PDG RPP:

As in 1D, Wilks’s Theorem is asymptotic (large N) result, with 
various “regularity conditions” to be satisfied.
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http://pdg.lbl.gov/2018/reviews/rpp2018-rev-statistics.pdf
µ1

µ2

2D joint ≈ 68% C.L.
2∆lnL = 2.3

× =  (�µ1,�µ2)

×



Nuisance Parameters
Frequently one is interested in considering one parameter at a 
time, irrespective of the value of other parameter(s).                 
The parameter under consideration at the moment is called the 
“parameter of interest” and the other parameters (at that 
moment) are called “nuisance parameters”. 
E.g., if µ1 is of interest and µ2 and is a nuisance, one seeks a 2D 
confidence region that is a vertical “stripe” in the (µ1,µ2) plane.
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µ1

µ2

µ1

µ2

µ1

µ2

2D joint 68% C.L. 

2D region to get 1D 
68% C.L. interval for µ1
(µ2 is nuisance)

2D region to get 1D 
68% C.L. interval for µ2
(µ1 is nuisance)

How to construct?



Systematic Uncertainties as Nuisance Parameters

A  typical measurement in HEP has many subsidiary 
measurements of quantities not of direct physics interest, but 
which enter into the calculation of the physics quantity of 
particular interest.
E.g., if an absolute cross section is measured, one will have 
uncertainty in the integrated luminosity L, in the background 
level b, the efficiency e of detecting the signal, etc.  In HEP, we 
call these systematic uncertainties, but statisticians (for the 
obvious reason) refer to L, b, and e as nuisance parameters.
Each of the three main classes of constructing intervals 
(Bayesian, Neyman confidence, likelihood ratio) has a “native” 
way to incorporate the uncertainty on the nuisance parameters.     
But this remains a subject of frontier statistics research.
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Nuisance Parameters I: Bayesian Credible Intervals
Construct a multi-D prior pdf p(parameters) for the space 
spanned by all parameters. 
Multiply by L(data|parameters) for the data obtained to obtained 
multi-D posterior pdf. 
Integrate over the full subspace of all nuisance parameters 
(marginalization). 
Thus obtain posterior pdf for the parameter of interest.           
Math is reduced to the case of no nuisance parameters.
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Nuisance Parameters I: Bayesian Credible Intervals
Construct a multi-D prior pdf p(parameters) for the space 
spanned by all parameters. 
Multiply by L(data|parameters) for the data obtained to obtained 
multi-D posterior pdf. 
Integrate over the full subspace of all nuisance parameters 
(marginalization). 
Thus obtain posterior pdf for the parameter of interest.           
Math is reduced to the case of no nuisance parameters.
Problems: The multi-D prior pdf is a problem for both subjective 
and non-subjective priors.  In HEP there has been little use of 
the favored non-subjective priors (reference priors of Bernardo 
and Berger). The high-D integral can be a technical problem, 
more and more overcome by Markov Chain Monte Carlo.  
As with all Bayesian analyses, how to interpret probability?
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Many of us raised on MINUIT MINOS read F. James, 
“Interpretation of the Shape of the Likelihood Function around 
Its Minimum,” Computer Physics Communications 20 (1980) 29.
Whereas 2D region has m=2 and hence 2∆lnL = 2.3 from PDG 
RPP table, for 1D interval on µ1, we first make 2D contour with 
m=1 value, 2∆lnL = 1 (black dashed), and then find extrema in µ1:
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µ1

µ2

2D joint ≈ 68% C.L.
2∆lnL = 2.3

µ1

µ2

2D region to get 1D 
68% C.L. interval for µ1
2∆lnL = 1 (dashed)

× ×

× = (�µ1,�µ2)

...and then at the 
Fermilab Confidence 
Limits Workshop in 
2000, statistician 
Wolfgang Rolke
expressed the 
construction a 
different way: 

Nuisance Parameters III: Likelihood Ratio intervals



�µ2

�µ2

�µ2

Profile Likelihood Function
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µ1

µ2

2D region to get 1D 
68% C.L. interval for µ1
2∆lnL = 1 (dashed)

× = (�µ1,�µ2)
×

Red curve is path (µ1,�µ2)
along which profile L is 
evaluated

For each µ1, find the value �µ2 that 
minimizes −2lnL(µ1,�µ2). 
Make 1D plot vs µ1 of this “profile 
likelihood function”.
Use the m=1 threshold on 2∆lnLprofile .
One obtains the exact same interval as 
“MINOS” on the left?  Can you see why?
Since 2000, this statistical terminology 
has permeated HEP. It is also used for 
example in the “Kendall and Stuart” 
page that I showed re F-C.
Warning: Combining profile likelihoods 
from two experiments is unreliable.  
Apply profiling after combining full 
likelihoods.



Likelihood Ratio intervals (cont.)
Problems: 
Coverage is not guaranteed, particularly at low N.  By using 
best-fit value of the nuisance parameters corresponding to each 
value of the parameter of interest, this has an (underserved?) 
reputation for underestimating the true uncertainties.  
In Poisson problems, this is partially compensated by effect due 
to discreteness of n, and profile likelihood (MINUIT MINOS) 
gives good performance in many problems. See Rolke et al., 
NIM A551 (2005) 493.
In some cases (for example when the are spikes in L ), 
marginalization may give better frequentist performance, 
according to statisticians.
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Hybrid Techniques: Introduction to Pragmatism

Given the difficulties with all three classes of interval estimation, 
especially when incorporating nuisance parameters, it is 
common in HEP to relax foundational rigor and:

– Treat nuisance parameters in a Bayesian way 
(marginalization)  while treating the parameter of interest in 
a frequentist way.                                                                
Virgil Highland and I were early advocates of this for lumi
uncertainty in upper limit calculation (NIM A320 (1992) 331).  
Kyle Cranmer exposed problems when used for 
background mean in 5σ discovery context.                        
For review of background case and connection to Box’s 
semi-Bayesian “prior predictive p-value”, see NIM A595 
(2008) 480, https://arxiv.org/abs/physics/0702156

– Treat nuisance parameters by profile likelihood while 
treating parameter of interest another way, or
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Introduction to Pragmatism (cont.)

– Use the Bayesian framework (even without the priors 
recommended by statisticians), but evaluate the 
frequentist performance.  In effect (as in profile likelihood) 
one gets approximate coverage while respecting the L.P. 
In fact, the statistics literature going back to 1963 has 
attempts to find prior pdfs that lead to posterior pdfs with 
good frequentist coverage: probability matching priors. 
(At lowest order in 1D, it is the Jeffreys prior!)
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“State of the Art” in HEP

All three main classes of methods are commonly used on the 
parameter of interest.

– Both marginalization and profiling are commonly used to 
treat nuisance parameters.

– Many people have the good practice of checking 
coverage.

– Too little attention is given to priors.  But flat prior for 
Poisson mean is “safe” for upper limits (only!).

A serious analysis using any of the main methods requires 
coding up the likelihood function. 

– Doing this (once!) with RooFit modeling language gives 
access to RooStats techniques for all three classes of 
calculations, mix-match nuisance parameter treatments.
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ATLAS and CMS Conventions

For many years, ATLAS and CMS physicists have collaborated 
on statistics tools (the RooStats software), and attempted to 
have some coherence in methods so that results could be 
compared, and (when worth the effort) combined.
An important development was the paper by Cowan, Cranmer, 
Gross and Vitells, https://arxiv.org/abs/1007.1727 , that 
extended asymptotic formulas to a number of cases where 
Wilks’s theorem was not valid.  
As the CCGV asymptotic formulas applied to the “fully 
frequentist” treatment of nuisances parameters, for 
consistency we tended to use that in many cases at small N as 
well.  Toy MC is thus done in a frequentist manner (so-called 
parametric bootstrap).
For upper limits, there was a lot of discussion without 
convergence, and the two physics coordinators in 2010 
decreed that CLs be used in most cases. (See below.)
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ATLAS and CMS Conventions (cont.)

The ATLAS/CMS Higgs results followed these trends. A jointly 
written description is, “Procedure for the LHC Higgs boson 
search combination in Summer 2011,” http://cds.cern.ch/record/1379837.
Many issues were further discussed and described in the 
ATLAS-CMS combination papers for mass and couplings, 
https://arxiv.org/abs/1503.07589 and https://arxiv.org/abs/1606.02266 . In 
particular, a lot of attention was paid to correlations.
In the last couple years, Feldman-Cousins starts to be used 
more, without my pushing.  (Initially some at the LHC were very 
opposed, evidently because it could return two-sided interval 
not including zero when they really wanted a strict upper limit.)
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Downward fluctuations in searches for excesses
Classic example: Upper limit on mean µ of Gaussian pdf for x. 
Frequentist UL construction if µ≥0 in model (σ=1) :
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Frequentist 1-sided 95% C.L. 
Upper Limits, for α = 1–C.L. = 5%. 
As observation x becomes 
increasingly negative, standard 
frequentist upper limit becomes 
small and then null.
For x < −1.64 σ,  the confidence 
interval is the null set!µ = 0



Downward fluctuations in searches for excesses
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Issue acute 15-25 years ago in expts to measure νe mass in 
(tritium β decay): several measured mν

2 < 0.

This is a very long story; see my “virtual talk” 
http://www.physics.ucla.edu/~cousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf

and related post https://arxiv.org/abs/1109.2023 . 

Contains intro to “Buehler’s betting game”, related to 
conditioning.

http://www.physics.ucla.edu/%7Ecousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf
https://arxiv.org/abs/1109.2023


Bayes, Fisher, Neyman, 
Neutrino Masses, and the LHC

Bob Cousins
Univ. of California, Los Angeles

Virtual Talk
12 September 2011
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CLS
The unfortunately named CLS is the traditional frequentist one-
tailed p-value for upper limits divided by another tail probability 
less than 1. The limits are thus (intentionally) conservative.
Brief definition with references in PDG RPP: 
http://pdg.lbl.gov/2011/reviews/rpp2011-rev-statistics.pdf .

A few more notes/history are in my arxiv post on these lectures.
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CLS inherits all issues of p-values
• What is new (non-standard statistics) in CLS is combining 

the two p-values into 1 quantity.  
– This step is called “the CLS criterion” in CMS papers.

• The p-values themselves have long existed in the statistics 
literature and should be designated that way (and not with 
the names that the inventor of named CLS gave them).  All 
the issues of p-values (choice of test statistic, how to 
eliminate nuisance parameters) of course still exist.

• LEP, Tevatron, and LHC Higgs combination groups differ in 
choices (!)
– What specific likelihood ratio used in test statistic
– Treatment of nuisance parameters
– Ensembles used for “Toy M.C.” used to get distribution of 

test statistic under H0 (no Higgs) and H1 (SM with Higgs)
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My advocacy for >10 years:

197

Have in place tools to allow computation of results using a 
variety of recipes, for problems up to intermediate complexity:

– Bayesian with analysis of sensitivity to prior
– Profile likelihood ratio (Minuit MINOS)
– Frequentist construction with approximate treatment of 

nuisance parameters
– Other “favorites” such as LEP’s CLS (an HEP invention)

The community can (and should) then demand that a result 
shown with one’s preferred method also be shown with the other 
methods, and sampling properties studied.

When the methods all agree, we are in asymptopic nirvana.
When the methods disagree, we are reminded that the results are 
answers to different questions, and we learn something! E.g.:

– Bayesian methods can have poor frequentist properties
– Frequentist methods can badly violate likelihood principle

Bob Cousins, Stats in Theory, HCPSS 2018



Unsound statements you can now avoid*
• “It makes no sense to talk about the probability density of a 

constant of nature.”
• “Frequentist confidence intervals for efficiency measurements 

don’t work when all trials give successes.”
• “We used a uniform prior because this introduces the least bias.” 

Or “a noninformative prioer since it contained no information.”
• “The total number of events could fluctuate in our experiment, so 

obviously our toy Monte Carlo should let the number of events 
fluctuate.”

• We used Delta-likelihood contours so there was no Gaussian 
approximation.”

• “A five-sigma effect constitutes a discovery.”
• “The confidence level tells you how much confidence one has that 

the true value is in the confidence interval.”
• “We used the tail area under the likelihood function to measure the 

significance.”
• “Statistics is obvious, so I prefer not to read the literature and just 

figure it out for myself.”

*Taken from real life
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References Cited in Talk Slides
Behnke13: O. Behnke et al., Data Analysis in High energy Physics, Wiley-VCH, 

2013.
James06: Frederick James, Statistical Methods in Experimental Physics, 

World Scientific, 2006.
Stuart99: A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of Statistics, 

Vol. 2A, 6th edition, 1999; and earlier editions by Kendall and Stuart.
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Thanks again!
Thanks to many in HEP (Frederick James, Gary Feldman, Louis 
Lyons, Luc Demortier, + others numerous others) from whom I 
learned...
...many statisticians that Louis invited to PhyStat meetings -- for 
Bayesian statistics that was especially Jim Berger (multiple 
times) and Michael Goldstein...
...and to CMS Statistics Committee (Olaf Behnke et al.) for many 
discussions and comments on earlier versions of the slides...
...and to the authors of numerous papers from which I learned, 
including early (1980s) Bayesian papers by Harrison Prosper...
...and to Diego Tonelli of the LHCb experiment for comments on 
a earlier version of these sides.
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Recommended reading
Books: I usually recommend the following progression, reading the first three 

cover-to-cover, and consulting the rest as needed:
1) Philip R. Bevington and D.Keith Robinson, Data Reduction and Error 

Analysis for the Physical Sciences (Quick read for undergrad-level review)
2) Glen Cowan, Statistical Data Analysis (Solid foundation for HEP)
3) Frederick James, Statistical Methods in Experimental Physics, World 

Scientific, 2006. (This is the second edition of the influential 1971 book by 
Eadie et al., has more advanced theory, many examples)

4) A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of Statistics, Vol. 
2A, 6th edition, 1999; and earlier editions of this “Kendall and Stuart” 
series.  (Comprehensive old treatise on classical frequentist statistics; 
anyone contemplating a NIM paper on statistics should look in here first!)

5) George Casella and R.L. Berger, Statistical Inference, 2nd, Ed. 2002. A more 
modern, less dense text on similar topics as Kendall and Stuart.

6) Recent book by HEP “experts”: O. Behnke et al., Data Analysis in HEP, 2013
PhyStat conference series: Beginning with Confidence Limits Workshops in 

2000, links at http://phystat-lhc.web.cern.ch/phystat-lhc/ and 
http://www.physics.ox.ac.uk/phystat05/

My Bayesian reading list is the set of citations in my Comment, Phys. Rev. 
Lett. 101 029101 (2008), especially refs 2, 8, 9, 10, 11; 7 for model selection)
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Jim Berger:
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New Era for non-subjective Bayesian priors in HEP?
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So far use in HEP has been limited.



Sensitivity Analysis
An “objective Bayesian’s” point of view: 
“Non-subjective Bayesian analysis is just a part -- an 
important part, I believe – of a healthy sensitivity analysis 
to the prior choice…”

– J.M. Bernardo, J. Roy. Stat. Soc., Ser. B 41 113 (1979)
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From the Proceedings: “…Again, different individuals may 
react differently, and the sensitivity analysis for the effect of 
the prior on the posterior is the analysis of the scientific 
community...”

From his transparencies:
“Sensitivity Analysis is at the heart of scientific Bayesianism.”

Sensitivity analysis:       
A subjective Bayesian’s 
point of view:
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Robert Kass’s Questions for Classifying Kinds of Bayesians*
1. Is it important for Bayesian inferences to have good frequentist 

operating characteristics? 
2. Does the Bayesian paradigm do anything more than produce candidate 

procedures, to be judged according to frequentist criteria? 
3. Is there a useful role for default (a.k.a. “objective”) Bayesian inferences 

as representing approximately subjective inferences?
4. Is it possible to interpret default Bayesian inference as anything other 

than approximately subjective? 
5. Assuming that the data analyst has done a thorough and careful job, is 

it appropriate to interpret default Bayesian inferences as representing, 
approximately, what any reasonable person ought to think given the 
data and appropriate background information? 

6. Is there any useful meaning to the word “objective,” beyond signifying 
such overwhelming evidence that reasonable people will be forced to 
agree.

7. Is the word “objective” so easy to misunderstand that its utility in the 
context of Bayesian inference is, on average, negative? 

8. Is it important to distinguish scientific inference from decision-making?
9. Are there scientific settings in which formal elicitation procedures are 

useful?

* “Kinds of Bayesians (Comment on articles by Berger and by Goldstein)”, Bayesian Analysis 1 437 (2006)
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E.g. 95% C.L. central interval for p if 
10/10 successes/trials:  (0.69,1.0)Bob Cousins, Stats in Theory, HCPSS 2018 208

Inner corners of the steps give 
the intervals; traditional to draw 
the curved “belts” connecting 
them, but only evaluated at the 
integers. Tricky to draw, read!
(See next slide for details.)

Discreteness of x typically 
requires horizontal acceptance 
intervals to contain more than 
95% probability, so there is  
over-coverage in the vertical 
confidence intervals.

Clopper and Pearson’s construction
x = number of successes (here, integer 0-10 out of 10 trials)
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Partial details of construction:

Blue lines are two of the 
acceptance intervals having 
central 95% or more probability, 
at continuous ρ.

Note data x is discrete, so 
graph is only read at discrete x.

If you stare at it long enough, 
you will see connection 
between upper/lower limits and 
central intervals, for discrete 
data.

Clopper and Pearson’s construction (cont.)



Classical Goodness of Fit (g.o.f.)

If H0 is specified but the alternative H1 is not, then only the Type 
I error probability α can be calculated, since the Type II error 
probability β depends on a H1. 
A test with this feature is called a test for goodness-of-fit (to H0).
The question “Which g.o.f. test is best?” is thus ill-posed.  In 
spite of the popularity of tests with universal maps from test 
statistics to α (in particular χ2 and Kolomogorov tests), they 
may be ill-suited for many problems (i.e., they may have poor 
power (1- β) against relevant alternative H1’s).
In 1D, unbinned g.o.f. test question is equivalent to:             
“Given 3 numbers (e.g. neutrino mixing angles) in [0, 1], are 
they consistent with three calls to RAN() ?”    
Have fun with that!
For discussion of g.o.f., see 
http://cousins.web.cern.ch/cousins/ongoodness6march2016.pdf
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Goodness of Fit (cont.)

Issue in last 15 years:  need for a multi-D unbinned test.  
E.g., is it reasonable that 1000 events scattered in 5D have been 
drawn from a particular pdf (which may have parameters which 
were fit using an unbinned M.L. fit to those 1000 events.) ?
Of course this is an ill-posed question, but looking for good 
omnibus test.  Getting the null distribution from M.C. is typically 
doable, it seems.
See Aslan and Zech, https://arxiv.org/abs/math/0207300 and others 
at past PhyStats. 
1D issues well-described in book by D’Agostino and Stephens 
(must-read for those wanting to invent a new test). 
Useful review by Mike Williams, “How good are your fits? 
Unbinned multivariate goodness-of-fit tests in high energy 
physics”, http://arxiv.org/abs/1006.3019
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Original paper has one unknown parameter 
θ1 on vertical axis and horizontal planes for 
2D vectors of observables E = (x1,x2).

Prior to experiment, acceptance regions 
A(θ1) in E-space planes are determined for 
each θ1 (needs ordering principle) with 
P(E∈A(θ1)) = C.L.

E′ is data actually observed in expt.
Upon obtaining E′, confidence interval for 
θ1 consists of all values of θ1 for which E′ is 
in A(θ1).
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Luc Demortier and Louis Lyons, 
“Testing Hypotheses in Particle Physics: Plots of p0 versus p1”

Test of point null vs point
alternative, two Gaussians 
with same σ, peak 
separation ∆µ.

At a glance can see that 
contours of constant λ01
are completely different 
topology from contours of 
e.g. p0.

For rest of plot, you will 
have to read their paper or
stare at it for a long time.
http://arxiv.org/abs/1408.6123

http://arxiv.org/abs/1408.6123


Classical Hypothesis Testing: Duality
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“There is thus no need to derive optimum properties separately 
for tests and for intervals; there is a one-to-one correspondence 
between the problems as in the dictionary in Table 20.1” 
Stuart99, p. 175.

Test µ=µ0 at α ↔ Is µ0 in conf. int. for µ with C.L. = 1- α

Referred to as “inverting a test” to obtain intervals; vice versa.



Approximate Confidence Regions Using ∆(-lnL) 
(included in appendix to MINUIT users guide)
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Demortier gives details on how average interval length is shorter 
in the HEP example. Here I give Cox’s discussion.
E.g., if one is testing µ=0 vs µ=µ1 , with µ1 roughly the size of σ1
(the larger σ ), consider the following 68% CL intervals:

�µ ± (0.48)σ1 if Device #1 used (covers true µ in 37% of uses)
�µ ± 5σ2 if Device #2 used (covers true µ nearly 100% of uses)

So true µ is covered in (37/2 + 100/2)% = 68% of all intervals! 
Unconditional (full sample space) coverage is correct, but 
conditional coverage is not. 
Due to the smallness of σ2 , average length of all intervals is 
smaller conditional intervals with independent coverage.
One gives up power with Device #1 and uses it in Device #2.
Cox: “If, however, our object is to say `what can we learn from 
the data that we have’, the unconditional test is surely no good.”
These examples reveal a real conflict between N-P optimization 
for power and conditioning to optimize relevance.
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Example of D.R. Cox (cont.)



Look-Elsewhere Effect
In these lectures, I did not have time for the LEE.  
A starting point for self-study is the discussion in:

Louis Lyons, “Comments on ‘Look Elsewhere Effect’ ”.
https://users.physics.ox.ac.uk/~lyons/LEE_feb7_2010.pdf .

See also Section 9.2 of my paper on the Jeffreys-Lindley 
Paradox, https://arxiv.org/abs/1310.3791 . 

An important paper is
Eilam Gross, Ofer Vitells, “Trial factors for the look elsewhere 
effect in high energy physics,” https://arxiv.org/abs/1005.1891
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Sufficiency, Conditionality, Likelihood Principles
There is a lot more to the Likelihood Principle than I had time to 
discuss. I omitted the important (frequentist) concept of a 
“sufficient statistic”, due to Fisher.  This is a way to describe 
data reduction without loss of relevant information.  E.g., for 
testing a binomial parameter, one needs only the total numbers 
of successes and trials, and not the information on exactly 
which trials had successes.  See Stuart99 for math definitions. 
The sufficiency principle says (paraphrasing – there are strong 
and weak forms) that if the observed values of the sufficient 
statistic in two experiments are the same, then they constitute 
equivalence evidence for use in inference.
Birnbaum famously argued (1962) that the Conditionality 
Principle and the Sufficiency Principle imply the Likelihood 
Principle.  Controversy continues. For recent discussion, see   
D. Mayo (2014), https://projecteuclid.org/euclid.ss/1408368565#toc , 
with comments by six statisticians and rejoinder.

Bob Cousins, Stats in Theory, HCPSS 2018 218

https://projecteuclid.org/euclid.ss/1408368565#toc


Point Estimation
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Point Estimation
Most of these slides are about intervals – I have not yet much  
about what to quote as the “measured value”.  Statisticians call 
this the “point estimate”.
• There is a huge literature on point estimation – see e.g. Ch. 7 

and 8 in James06.  
• If you are an expert on interval estimation, one approach is 

to use that machinery to get a point estimate.  
– E.g., one might take the mid-point of (say) your 68% C.L. 

central interval. But a better approach is probably to let 
the C.L. go to 0, so that your interval gets shorter and 
shorter, and use the limiting point.  E.g. for likelihood 
ratio intervals, this results in the Maximum Likelihood 
estimate.

• But to give you an idea of how rich the subject is, I show a 
few interesting things from James06.
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Point Estimation: Traditional Desiderata
• Consistency: Estimate converges toward true value as 

number of observations N increases 
• Unbiasedness: Expectation value of estimate is equal to the 

true value.
• Efficiency: Estimate has minimum variance
• Minimum loss of information: (technical definition)
• Robustness: Insensitivity to departures from the assumed 

distribution
One can add:
• Simplicity: transparent and understandable
• Minimum computer time: still relevant in onlline applications, 

less relevant otherwise
• Minimum loss of physicist’s time (how much weight to put 

on this?)
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Bias and consistency are independent properties
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BUT (!) Other desired properties can be impossible to 
achieve simultaneously

• How to choose?  A thorough analysis requires further input: 
what are the costs of not incorporating various desiderata?  
Then formal decision theory can be used to choose estimator.

• In practice in HEP, Maximum Likelihood estimates are often 
used (even though they are typically not unbiased).
– Consistent
– Other excellent asymptotic properties (estimate is 

asymptotically normal)
– For finite N, works well in so-called exponential family 

(includes Poisson, Gaussian, binomial)
– Invariant under reparameterization
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Simple example illustrating diversity of point 
estimators (James06, p. 209)

• If p(x|µ) = f(x-µ), where f is some pdf, then µ is called a 
location parameter.  Common examples are:
– Normal: p ~ exp(-(x-µ)2/2σ2)
– Uniform:  p = constant for |x-µ|<a; p=0 otherwise
– Cauchy: p ~ 1/(a2 + (x-µ)2)
– Double exponential: p ~ exp( -a |x-µ| )

• These examples are all symmetric about µ:                       
p(µ+y) = p(µ-y)

• Suppose you are given N=11 values of x randomly sampled 
from p(x|µ).  What estimator (function of the 11 values) gives 
you the “best” estimate of µ ?

• If by “best” you mean minimum variance, it is the M.L. 
estimate, resulting in a different formula for each!
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Minimum Variance Location Estimator

Normal Sample mean (L2)

Uniform Midrange: mean of extreme values  (L∞)

Cauchy M.L. estimate (no simple formula)

Double-
exponential

Median: middle value (L1)
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Three of the four are special cases of Lp , the estimator that 
minimizes the sum over the observations of  |xi - µ|p .
Different values of p put different emphasis on observations in 
the tails.
If true distribution departs from that assumed, estimate of 
location is no longer optimal. Sensitivity is in tails!
See nice discussion of asymptotic variance and robustness in 
James06, pp. 211 ff.
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