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Introduction
• Strive for breadth rather than depth

® Links to resources at the end of the slides

• Yesterday: from basic principles to tracks

® What particle detectors do
® Semiconductors and signals from charged particles
® Local and global reconstruction

• Today: devices in the real world

® Radiation damage
® Operational considerations
® Real detectors

• Starting point: the basic project of experimental collider physics is to 

collide beams with matter (or other beams), identify and measure the 

particles that emerge to infer what happened.
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General principles
• CMS and ATLAS detectors
® Pixels at smallest radii, strips at large radii
® Strip direction aligned with beam (or radially outward on disks)

§ Best measurement R-j
® Pixels: greater longitudinal segmentation
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General principles
• Single-crystal silicon: Reverse-

biased p-n junction
® Electric field sweeps out any thermally 

produced electron-hole pairs (fully 
depleted sensor)

® Charged particle produces electron-
hole pairs which induce signal on 
implanted electrodes
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• On-detector electronics amplify
signal, apply threshold and/or 
pedestal subtraction, sometimes ADC

• Adjacent pixels/strips with charge 
combined into clusters

• Distribution of cluster position 
measurement residuals à resolution

• Spacepoint = hit with position + 
resolution à input to track finding
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From sand to silicon

Single crystal

Polysilicon pieces

Silicon wafers with different diameter

Electronic parts

Wafers in a 
package box

C
opyright Siltronic A
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From silicon to sensor

1. Starting Point: single-crystal n-doped  
wafer (ND ≈ 1–5·1012 cm-3)

2. Surface passivation by SiO2-layer 
(approx. 200 nm thick). E.g. growing by 
(dry) thermal oxidation at 1030 �C.

3. Window opening using 
photolithography technique with 
etching, e.g. for strips

4. Doping using either 
• Thermal diffusion (furnace)
• Ion implantation

- p+-strip: Boron, 15 keV, 
NA ≈ 5·1016 cm-2

- Ohmic backplane: Arsenic, 
30 keV, ND ≈ 5·1015 cm-2
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From silicon to sensor

5. After ion implantation: Curing of 
damage via thermal annealing at 
approx. 600�C, (activation of dopant 
atoms by incorporation into silicon 
lattice)

6. Metallization of front side: sputtering 
or CVD

7. Removing of excess metal by 
photolitography: etching of non-
covered areas

8. Full-area metallization of backplane 
with annealing at approx. 450�C for 
better adherence between metal and 
silicon

Last step: wafer dicing (cutting)
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From sensor to tracker
• Example: endcap module
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Close-up of strip detector
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Pixel detector modules

https://doi.org/10.1016/j.nima.2016.03.030

https://doi.org/10.1016/j.nima.2016.03.030
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Radiation damage
• We build silicon detectors in part because of their robustness against 

radiation damage but they are still susceptible
• Primary effect in sensors is from lattice damage: 
® Trapping centers

§ Reduced charge collection efficiency
® Generation centers (modified band structure)

§ increased leakage current
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Radiation damage
® Primarily increases number of acceptor levels

§ Example: Vacancy + phosphorous removes the donor property of P

– But there are many competing effects

§ Space charge sign inversion, often referred to as type inversion
§ Primary effect is on depletion voltage
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Radiation damage à Annealing
• Annealing effects complicate the issue
• Competing effects with different time constants
® “Beneficial” annealing: recombination of vacancy and interstitial (fast)
® “Reverse” annealing: more complex defects can combine (slow)

§ V+V à double vacancy (charge trapping), vacancy + impurity

• Thermal process: vacancies and interstitials are mobile
® Reason to keep silicon detectors cold (-20C)
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Sensor types and radiation
• blah

Michael Moll*as they are in current CMS pixels
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Type inversion?
• Detailed study and modern techniques have exposed a more 

complex picture of the internal electric field
® Transient Current Technique (TCT): measure velocity profile and 

thereby space charge profile and internal electric field
§ Laser produces electron-hole pairs, depth tunable via laser wavelength

® Dedicated simulations (eg PixelAV from M Swartz et al with TCAD for 
electric-field mapping)

• Old/simplified picture: linear electric field and uniform charge density

From M Swartz
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Type inversion?
• No type inversion at backplane?  Clearly nonuniform field and charge 

carrier density but an active field of research

e-h pairs deposited near 
field minimum separate 
only a little before trapping

collection of holes in 
the higher field region 
near the p+ implant From M Swartz

One picture for sensor interior:
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Radiation and electronics
• Electronics are also sensitive to radiation, but differently so

• Single-event upset (SEU) – flipped bit

• Shrink transistor size (130 nm à 65 nm)

• Focus of RD53 effort towards high-luminosity LHC
® Common ATLAS-CMS R&D project
® Testing three analog front-end choices

RD53A testing board
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Radiation damage
• “NIEL Hypothesis” – Hypothesis that Non Ionizing Energy Loss is the 

dominant effect in lattice damage 
• Surface damage at oxide -- semiconductor barrier 
® Ionization without recombination increases noise and cross-talk

• Charge amplification
• Every component of the detector down to the cables and the glue 

holding the modules together must be tested for radiation hardness

• Active field of study with open questions – critical questions for the 
HL-LHC detectors
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3D Sensors
• One strategy for mitigating radiation hardness in sensors exposed to 

high fluence is to reduce the drift length through the sensor geometry
• One strategy is thinning the planar sensors
• Another is to change the drift path from across to within the sensor
• Plasma etching of silicon wafer to implant deep bias and collection 

electrodes has been demonstrated (see ATLAS IBL)
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Silicon detectors: CMS
• First hadron collider detector 

to use all-silicon tracking –
unprecedented scale 
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Silicon detectors: CMS
• New pixel detector (“Phase 1”) installed early 2017

® Challenges, but handles the current data rates, + improved performance

forward pixel “fans”, built 
here at Fermilab

Angle detector modules to optimize 
charge sharing for improved position 
measurements (nonzero incidence; 
Lorentz angle) 
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Silicon detectors: CMS

The actual detector

service cylinder
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Silicon detectors: ATLAS
• Outermost part of tracker still 

gas-and-wire (Transition 
Radiation Tracker, TRT)

endcap

SCT barrel
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ATLAS: the IBL
• “Insertable Barrel Layer” 

placed between previous 
innermost layer and 
beampipe to improve impact 
parameter measurement

• Installed Summer 2014

Reduced pixel size in Z 
400 à 250 µm
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ATLAS: the IBL and 3D
• First use of 3-d pixels at a hadron 

collider

• “Radiation testing in the R&D phase 

showed no improvement in radiation 

hardness compared to the planar 

sensors” – but this is a first use case

• No difference in average 

pixel threshold of 1500e

• Slightly higher noise 

because of higher 

capacitance
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Silicon detectors: LHCb “VELO”
• Microstrip detector, n+ in n, strip pitch varies 40-100 um

• Not a spectrometer: only fringes of magnetic field

• Detector moved to w/in 7 mm of beam (note flex cables) after 
injection



• 3000 fb-1 : LHC opens the firehose and we enter an unprecedented 
environment in a hadron collider

• Instantaneous luminosity up to 5 x 1034 cm-2 s-1 enabling ~250 fb-1

per year (point of reference: Higgs boson discovery with 30 fb-1)
• 200 interactions/bunch crossing



200 vertices in 10 cm

The High-Luminosity LHC



Problems for the pixel detector:
• hit rate up to 3 GHz/cm2 à how to separate 

tracks?  How to read data off the detector
• Extreme radiation dose (up to 5MGy at 5cm)
• Fluence: up to 2.5x1026cm-2 (2 x 1016 Neq)

àcurrent pixel detector inoperable, rest of the 
detector challenged

Fundamental upgrades to nearly every part of the 
CMS detector, much of it pushing silicon 
semiconductor detector technology
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(CMS) Pixels for the HL-LHC
• 3000 fb-1, starting from 2026 – at a price
® 200 interactions per bunch crossing, total fluence 2x1016 MeV n eq/cm2

• In order to survive thrive:
• Shrink the pixels
® 25x100 µm2 or maybe 50x50 µm2

• and build a bigger detector
® In particular 3 à 12 pixel disks on each side

current 
pixel

150 µm

1
0

0
 µ

m
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Track trigger
• Event rate and combinatorics 

(granularity) prevents use of 
silicon tracking in first trigger 
decision

• Instead of running full 
tracking, look for “stubs” in a 
pair of adjacent sensors
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Calorimetry with silicon
• Scintillator won’t suffice for HL-

LHC fluences

• Silicon as active material, 

copper/tungsten absorber

arXiv:1708.08234

• hexagonal pads (~1 cm) 

for sensors – no 

preferred direction as in 

pixels and strips 



33c. mills (UIC+FNAL)

”Imaging Calorimeters”
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Four-dimensional vertexing?
• Focused thus far on three-dimensional reconstruction, but these 200 

events per bunch crossing are also distributed in time in an 
uncorrelated way – but need time resolution in 10s of picoseconds
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4D Reconstruction Vertices
4D Tracks
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Sensors for precision timing
• LGAD = Low Gain Avalanche Diode
® Charge multiplication ß Fundamentally different from what we’ve seen so 

far

From a poster by H. Sadrozinski, UCSC & RD50 
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MIP Timing Detector
• Single layer surrounding entire detector, LGADs for forward detector
• Technological proof-of-concept: performance as needed even after 

irradiation
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Signals from charged particles
Bethe-Bloch equation describes interaction of particles with matter

!" = $
%&
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First Si detector in HEP
• NA11/NA32 silicon detector, at CERN (1983)
Fixed-target experiments to measure lifetime and mass of the charm 

mesons D0, D-, D+, D+
s, D-

s

Surface 24 cm2 (2” wafer)
1200 strips, 20 µm pitch
Ever 3rd/6th strip connected.
Precision 4.5 µm !

8 silicon detectors
(2 in front, 6 behind target)

Ratio detector surface 
to nearby electronics
surface 1:300 !

NIM205 (1983) 99



41c. mills (UIC+FNAL)

Scaling down and up
• Miniaturized, dedicated electronics (Application-Specific Integrated 

Circuit (ASIC)) allowed larger areas to be tiled
® contain preamplifier, digitizer, pipeline, multiplexing, 

Detail from the DELPHI Vertex detector
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CDF: first at a hadron collider

https://inspirehep.net/record/1317406/files/cdf0362_ocr.pdf

https://inspirehep.net/record/1317406/files/cdf0362_ocr.pdf

