

Bugs and Features

Hierarchy (Naturalness) problem

$$
\mathcal{L}_{2}= \pm \mu^{2}|H|^{2}
$$

Why is μ so much smaller than $M_{G U T}, M_{P l}$?

Unlike fermions (and gauge bosons) no symmetry protects scalar mass parameter
1.Nature is fine-tuned (anthropics?)
2.The SM has no high scales (gravity?, unification?)
3.New dynamics/symmetries keeps mass scale low

Bugs and Features

Hierarchy (Naturalness) problem

$$
\mathcal{L}_{2}= \pm \mu^{2} \mid I
$$
There is something fascinating about science. One
gets such wholesale returns of conjecture out of such
\section*{Why is $\mu \mathrm{SC}$ a trifing investment of fact.}
-Mark Twain

Unlike fermions (and gauge bosons) no symmetry protects scalar mass parameter
1.Nature is fine-tuned (anthropics?)
2.The SM has no high scales (gravity?, unification?)
3.New dynamics/symmetries keeps mass scale low

Hierarchy (Naturalness) problem

$$
\begin{gathered}
\mathcal{L}=\left|\partial_{\mu} \phi\right|^{2}+\bar{\psi} i \not \partial \psi-m_{f} \bar{\psi} \psi-y \phi \bar{\psi} \psi-\mu^{2}|\phi|^{2}-\lambda|\phi|^{4} \\
\Delta m_{f} \sim-\frac{y^{2}}{16 \pi^{2}} m_{f} \log \left(\frac{\Lambda}{m_{f}}\right) \\
\Delta \mu^{2} \sim \frac{\lambda-y^{2}}{16 \pi^{2}} \Lambda^{2}-\frac{y^{2}}{16 \pi^{2}} m_{f}^{2} \log \frac{\Lambda}{m_{f}}
\end{gathered}
$$

Scalars are sensitive to the highest scale in the theory!
Expect new physics (Λ) at $\frac{4 \pi}{g} m_{h}$

Hierarchy (Naturalness) problem

$$
\begin{gathered}
\mathcal{L}=\left|\partial_{\mu} \phi\right|^{2}+\bar{\psi} i \not \partial \psi-m_{f} \bar{\psi} \psi-y \phi \bar{\psi} \psi-\mu^{2}|\phi|^{2}-\lambda|\phi|^{4} \\
\Delta m_{f} \sim-\frac{y^{2}}{16 \pi^{2}} m_{f} \log \left(\frac{\Lambda}{m_{f}}\right) \\
\Delta \mu^{2} \underset{\sim}{\sim} \frac{\lambda-y^{2}}{16 \pi^{2}} \Lambda^{2}-\frac{y^{2}}{16 \pi^{2}} m_{f}^{2} \log \frac{\Lambda}{m_{f}} \\
\begin{array}{c}
\text { Possible } \\
\text { Solution? }
\end{array}
\end{gathered}
$$

Scalars are sensitive to the highest scale in the theory!
Expect new physics (Λ) at $\frac{4 \pi}{g} m_{h}$

Hierarchy (Naturalness) problem

SM Higgs sensitivity (how low ean you go)

$$
\begin{gathered}
\delta m_{h}^{2}=\alpha_{t} \Lambda_{t}^{2}+\alpha_{g} \Lambda_{g}^{2}+\alpha_{h} \Lambda_{h}^{2} \\
\alpha_{t}=\frac{3 m_{t}^{2}}{4 \pi^{2} v^{2}}, \quad \alpha_{g}=-\frac{6 m_{W}^{2}+3 m_{Z}^{2}}{16 \pi^{2} v^{2}}, \quad \alpha_{h}=-\frac{3 m_{h}^{2}}{16 \pi^{2} v^{2}}
\end{gathered}
$$

(One) Measure of fine tuning: $\quad D_{i}\left(m_{h}\right) \equiv\left|\frac{\partial \log m_{h}^{2}}{\partial \log \Lambda_{i}^{2}}\right|=\frac{\left|\alpha_{i}\right| \Lambda_{i}^{2}}{m_{h}^{2}}$

No guaranteed discovery, unlike Higgs mechanism

Should not stop us looking!!

Hierarchy (Naturalness) problem

SM Higgs sensitivity (how lonn does Nature

$$
\delta m_{h}^{2}=\alpha_{t} \Lambda_{t}^{2}+\alpha_{g} \Lambda_{g}^{2}+\alpha_{h} \Lambda_{h}^{2}
$$

$$
\alpha_{t}=\frac{3 m_{t}^{2}}{4 \pi^{2} v^{2}}, \quad \alpha_{g}=-\frac{6 m_{W}^{2}+3 m_{Z}^{2}}{16 \pi^{2} v^{2}}, \quad \alpha_{h}=-\frac{3 m_{h}^{2}}{16 \pi^{2} v^{2}}
$$

(One) Measure of fine tuning: $\quad D_{i}\left(m_{h}\right) \equiv\left|\frac{\partial \log m_{h}^{2}}{\partial \log \Lambda_{i}^{2}}\right|=\frac{\left|\alpha_{i}\right| \Lambda_{i}^{2}}{m_{h}^{2}}$

No guaranteed discovery, unlike Higgs mechanism

Should not stop us looking!!

Supersymmetry...a BSM case study

Bosons

Fermions

(more than) Doubling of the spectrum

SM Field	$S U(3)$	$S U(2)$	$U(1)$	MSSM partner	Superfield
$q_{i}(\mathrm{LH}$ quarks	3	2	$\frac{1}{6}$	\tilde{q}_{i} (LH squarks)	Q_{i}
$u_{i}^{c}(\mathrm{RH}$ top, charm, up)	$\overline{3}$	1	$-\frac{2}{3}$	$\tilde{u}_{i}^{c}(\mathrm{RH}$ stop, scharm, sup)	U_{i}^{c}
d_{i}^{c} (RH bottom, strange, down)	$\overline{3}$	1	$\frac{1}{3}$	\tilde{d}_{i}^{c} (RH sbottom, sstrange, sdown)	D_{i}^{c}
ℓ_{i} (LH leptons)	1	2	$-\frac{1}{2}$	$\tilde{\ell}_{i}$ (LH sleptons)	L_{i}
e_{i}^{c} (RH tau, muon, electron)	1	1	1	\tilde{e}_{i}^{c} (RH stau, smuon, selectron)	E_{i}^{c}
$h_{u}\left(h_{d}\right)$ (up-type (down-type) Higgs)	1	2	$\frac{1}{2}\left(-\frac{1}{2}\right)$	$\tilde{h}_{u}\left(\tilde{h}_{d}\right)$ (up-type (down-type) higgsino)	$H_{u}\left(H_{d}\right)$
gluino	8	1	0	gluino	
W/Z	1	3	0	Wino/Zino	
B/photon	1	1	0	bino/photino	

Superpartners have the same couplings as SM partners If SUSY (softly) broken they have different masses Many new interactions...>100 new parameters!

Many constrained by flavour, CP-violation
sUSY breaking models (GMSB, AMSB,...) predict relations

Supersymmetry...a BSM case study

Many constrained by flavour, CP-violation
sUSY breaking models (GMSB, AMSB,...) predict relations

Supersymmetry

$$
W_{M S S M}=\mathbf{Y}_{\mathbf{U}} U^{c} Q H_{u}-\mathbf{Y}_{\mathbf{D}} D^{c} Q H_{d}-\mathbf{Y}_{\mathbf{E}} E^{c} L H_{d}+\mu H_{u} H_{d}
$$

Flip two

Yukawa

Supersymmetry

Extended Higgs sector Higgs modifications

$$
W_{M S S M}=\mathbf{Y}_{\mathbf{U}} U^{c} Q H_{u}-\mathbf{Y}_{\mathbf{D}} D^{c} Q H_{d}-\mathbf{Y}_{\mathbf{E}} E^{c} L H_{d}+\mu H_{u} H_{d}
$$

Flip two

Yukawa

Supersymmetry

Extended Higgs sector Higgs modifications

$$
W_{M S S M}=\mathbf{Y}_{\mathbf{U}} U^{c} Q H_{u}-\mathbf{Y}_{\mathbf{D}} D^{c} Q H_{d}-\mathbf{Y}_{\mathbf{E}} E^{c} L H_{d}+\mu H_{u} H_{d}
$$

Flip two

Yukawa

Supersymmetry

New fields allow for new interactions (EFT philosophy)

Proton lifetime: $\quad \Gamma \sim \frac{\kappa_{1} \kappa_{4}}{16 \pi} \frac{m_{p}^{5}}{m_{\tilde{q}}^{4}} \quad \kappa<10^{-12}$!
Forbid these (RPV) operators with a parity (R-parity)

$$
S M \rightarrow S M \quad B S M \rightarrow-B S M
$$

1.SM and partners don't mix
2.SUSY states pair produced
3.Lightest parity odd particle stable (DM?)

Supersymmetry

New fields allow for new interactions (EFT philosophy)

Proton lifetime: $\quad \Gamma \sim \frac{\kappa_{1} \kappa_{4}}{16 \pi} \frac{m_{p}^{5}}{m_{\tilde{q}}^{4}} \quad \kappa<10^{-12}$!
Forbid these (RPV) operators with a parity (R-parity)

$$
S M \rightarrow S M \quad B S M \rightarrow-B S M
$$

1.SM and partners don't mix
2.SUSY states pair produced
3.Lightest parity odd particle stable (DM?)

Supersymmetry

Complicated spectrum, details depend on model GMSB, Effective/Natural SUSY, Dirac gauginos.... Many, many interesting collider signatures Lightest coloured states made first, decays involve MET Compressed/Stealth spectra can hide SUSY (a little) Electroweakino sector starting to be probed (DM) SUSY is a great signal generator

Natural
Wino
gluino
stopL, stopR, sbottomL
higgsino

Selected CMS SUSY Results* - SMS Interpretation

Selected CMS SUSY Results* - SMS Interpretation

Selected CMS SUSY Results* - SMS Interpretation

Selected CMS SUSY Results* - SMS Interpretation

"Observed limits at 95% C.L. - theory uncertainties not included

Only a selection of available mass limita. Probe "up to" the quoted mass limit for $m=0 \mathrm{GeV}$ unless stated otherwise

General BSM lessons

Top partners (fermions/bosons)
Higgs sector modifications
LPOPs, parity, DM, MET
Extra matter in fundamental and adjoint reps.
New gauge groups?
Lighter, more weakly coupled particles?
Resonances?

General BSM lessons

Top partners (fermions/bosons) Higgs sector modifications LPOPs, parity, DM, MET
Extra matter in fundamental and adjoint reps.
New gauge groups?
Lighter, more weakly coupled particles?
Resonances?

General BSM lessons

Top partners (fermions/bosons)

Composite Higgs

 Higgs sector modificationsLPOPs, parity, DM, MET
Extra matter in fundamental and adj Randall Sundrum

New gauge groups?
Lighter, more weakly coupled particles?
Resonances?

General BSM lessons

Top partners (fermions/bosons)

Composite Higgs

 Higgs sector modificationsLPOPs, parity, DM, MET
Extra matter in fundamental and adj Randall sundrum
New gauge groups?
Lighter, more weakly coupled particles? Little Higgs Resonances?

$$
\mathcal{L} \supset y Q_{A} H_{A} U_{A}^{c}+y Q_{B} H_{B} U_{B}^{c}
$$

Higgs is a PNGB, and Higgs potential is $\mathrm{O}(8)$ symmetric

$$
V=-m^{2} H^{\dagger} H+\lambda\left(H^{\dagger} H\right)^{2}
$$

$O(8) \rightarrow O(7): 7$ Goldstone bosons, 3 eaten by B gauge bosons

$$
H=\binom{H_{A}}{H_{B}}=e^{i h^{a} t^{a} / f}\left(\begin{array}{l}
0 \\
0 \\
0 \\
f
\end{array}\right)
$$

$$
\mathcal{L} \supset y Q_{A} H_{A} U_{A}^{c}+y Q_{B} H_{B} U_{B}^{c}
$$

Higgs is a PNGB, and Higgs potential is $\mathrm{O}(8)$ symmetric

$$
V=-m^{2} H^{\dagger} H+\lambda\left(H^{\dagger} H\right)^{2}
$$

$O(8) \rightarrow O(7): 7$ Goldstone bosons, 3 eaten by B gauge bosons

$$
\begin{gathered}
\text { SM Higgs } \\
H=\binom{H_{A}}{H_{B}}=e^{i h^{a} t^{a} / f}\left(\begin{array}{l}
0 \\
0 \\
0 \\
f
\end{array}\right)
\end{gathered}
$$

Twin Higgs

Gauge and Yukawa interactions explicitly break the $\mathrm{O}(8)$
Mass for Higgs?

$$
\frac{3}{8 \pi^{2}} \Lambda^{2}\left(y_{A}^{2} H_{A}^{\dagger} H_{A}+y_{B}^{2} H_{B}^{\dagger} H_{B}\right)
$$

Loop corrections to mass is $\mathrm{O}(8)$ symmetric, does not lead to quadratically divergent Higgs mass

EFT aside

Low energy degrees of freedom, non-linearly realized symm.

$$
\begin{gathered}
H=\binom{H_{A}}{H_{B}}=e^{i h^{a} t^{a} / f}\left(\begin{array}{l}
0 \\
0 \\
0 \\
f
\end{array}\right) \\
\vdots \\
H=\left(\begin{array}{c}
\mathbf{h} \frac{i f}{\sqrt{\mathbf{h}^{\dagger} \mathbf{h}}} \sin \frac{\sqrt{\mathbf{h}^{\dagger} \mathbf{h}}}{f} \\
0 \\
f \cos \frac{\sqrt{\mathbf{h}^{\dagger} \mathbf{h}}}{f}
\end{array}\right)=\left(\begin{array}{c}
i \mathbf{h} \\
0 \\
f-\frac{1}{2 f} \sqrt{\mathbf{h}^{\dagger} \mathbf{h}}
\end{array}\right)+\ldots
\end{gathered}
$$

Top sector

$$
\mathcal{L} \sim y Q_{A} H U_{A}^{c}+y Q_{B}\left(f-\frac{|H|^{2}}{2 f^{2}}\right) U_{B}^{c}
$$

Quadratic divergences cancel, states running in loop have no SM charge, same spin (3 is just a number)

Cancelling states not coloured: small production x-sec at LHC

To separate v and f and make the SM Higgs lie mostly in A introduce soft breaking $\mu_{A}^{2}\left|H_{A}\right|^{2}$

$$
\left\langle H_{A}\right\rangle=v_{S M} \ll\left\langle H_{B}\right\rangle=f \sim 1 \mathrm{TeV}
$$

Tuning grows with f/v

$$
\delta m_{h}^{2} \sim \frac{3 y_{t} m_{t}^{2}}{4 \pi^{2}}\left(\frac{f}{v}\right)^{2} \log \frac{\Lambda v}{m_{t} f}
$$

$$
\Delta=\left|\frac{2 \delta m_{h}^{2}}{m_{h}^{2}}\right|^{-1}
$$

To separate v and f and make the SM Higgs lie mostly in A introduce soft breaking $\mu_{A}^{2}\left|H_{A}\right|^{2}$

$$
\left\langle H_{A}\right\rangle=v_{S M} \ll\left\langle H_{B}\right\rangle=f \sim 1 \mathrm{TeV}
$$

Tuning grows with f/v

$$
\delta m_{h}^{2} \sim \frac{3 y_{t} m_{t}^{2}}{4 \pi^{2}}\left(\frac{f}{v}\right)^{2} \log \frac{\Lambda v}{m_{t} f}
$$

$$
\Delta=\left|\frac{2 \delta m_{h}^{2}}{m_{h}^{2}}\right|^{-1}
$$

$$
f / v \sim 3-5
$$

$$
V=-m^{2}\left(H_{A}^{\dagger} H_{A}+H_{B}^{\dagger} H_{B}\right)+\lambda\left(H_{A}^{\dagger} H_{A}+H_{B}^{\dagger} H_{B}\right)^{2}
$$

Higgs portal between A and B sectors

- Higgs mixing and corrections to Higgs pheno at $\frac{v^{2}}{f^{2}}$
- Higgs invisible decay width, to light B sector stuff

And now for something completely different...

Alonis 4.9\%

"You spin me right round..."

Fritz Zwicky

Coma Cluster

Virial theorem: $2\langle K\rangle=-\langle V\rangle$

$$
M=\frac{v^{2} R}{G_{N}}
$$

90% of the matter in the cluster doesn't shine

Something invisible is holding stars in orbit

Has been repeated in many systems on many scales. Alway same result: never enough stuff

$\frac{v^{2}}{r}=\frac{G_{N} M}{r^{2}}$
Something invisible is holding stars in orbit

Has been repeated in many systems on many scales. Alway same result: never enough stuff

Evidence for Dark Matter

The Bullet Cluster

Evidence for Dark Matter

The Bullet Cluster

The Bullet Cluster

Evidence for Dark Matter

Evidence for Dark Matter

Evidence for Dark Matter

The Cosmic Microwave Background as seen by Planck and WMAP

WMAP

Planck

Hot plasma of hydrogen atoms and photons, and DM and cc

Big Bang Nucleosynthesis

Hot soup of protons and neutrons, can predict light element abundance

Big Bang Nucleosynthesis

Hot soup of protons and neutrons, can predict light element abundance

Big Bang Nucleosynthesis

Hot soup of protons and neutrons, can predict light element abundance
~5\% in baryons

So far all probes have been gravitational in nature

What about other interactions?

HISTORY LESSON

Neptune discovered by wobble in orbit of Uranus

 —original DM!

Advance in Perihelion of Mercury needed new physics (general relativity) to explain it. (Originally thought to be planet Vulcan!)
-MOND??

DM as a thermal relic

"The weak shall inherit the Universe"
A weak scale particle (WIMP) freezes out to leave the correct relic abundance - the WIMP "miracle"

$$
\chi \chi \leftrightarrow \bar{f} f
$$

DM as a thermal relic

"The weak shall inherit the Universe"
A weak scale particle (WIMP) freezes out to leave the correct relic abundance - the WIMP "miracle"

$$
\chi \chi \leftrightarrow \bar{f} f
$$

- At high T production and annihilation in equilibrium

DM as a thermal relic

"The weak shall inherit the Universe"
A weak scale particle (WIMP) freezes out to leave the correct relic abundance - the WIMP "miracle"

$$
\chi \chi \leftrightarrow \bar{f} f
$$

- At high T production and annihilation in equilibrium
- Once T below mass, annihilation wins. Number drops

DM as a thermal relic

A weak scale particle (WIMP) freezes out to leave the correct relic abundance - the WIMP "miracle"

$$
\chi \chi \leftrightarrow \bar{f} f
$$

- At high T production and annihilation in equilibrium - Once T below mass, annihilation wins. Number drops - Since universe is expanding, at some point annihilation stops (different from particles in a box)

A weak scale particle (WIMP) freezes out to leave the correct relic abundance - the WIMP "miracle"

$$
\chi \chi \leftrightarrow \bar{f} f
$$

- At high T production and annihilation in equilibrium - Once T below mass, annihilation wins. Number drops - Since universe is expanding, at some point annihilation stops (different from particles in a box)
"Freeze out":

$$
n\langle\sigma v\rangle \sim H \sim \frac{T^{2}}{M_{p l}}
$$

A weak scale particle (WIMP) freezes out to leave the correct relic abundance - the WIMP "miracle"

$$
\chi \chi \leftrightarrow \bar{f} f
$$

- At high T production and annihilation in equilibrium - Once T below mass, annihilation wins. Number drops - Since universe is expanding, at some point annihilation stops (different from particles in a box)

$$
\frac{d n_{\chi}}{d t}+3 H n_{\chi}=-\langle\sigma v\rangle\left(n_{\chi}^{2}-n_{e q}^{2}\right)
$$

DM as a thermal relic

"The weak shall inherit the Universe"
A weak scale particle (WIMP) freezes out to leave the correct relic abundance - the WIMP "miracle"

DM, the story so far

-DM makes up 23% of the universe

- Gravitates like ordinary matter, but is non-baryonic
- Is dark i.e. neutral under SM (not coloured, or charged)
-Does not interact much with itself
-Does not couple to massless particle
- Was not relativistic at time of CMB
- Is long lived
- Is BSM physics

IF DM is a thermal relic:

- A weak scale annihilation x-sec gives correct abundance - Mass range is $10 \mathrm{keV} \lesssim m_{\chi} \lesssim 70 \mathrm{TeV}$

DM, the story so far

-DM makes up 23% of the universe

- Gravitates like ordinary matter, but is non-baryonic
- Is dark i.e. neutral under SM (not coloured, or charged)
-Does not interact much with itself $\frac{\sigma}{m} \lesssim 1 \mathrm{~cm}^{2} / g \sim \operatorname{barn} / \mathrm{GeV}$
-Does not couple to massless particle
- Was not relativistic at time of CMB
- Is long lived
- Is BSM physics

IF DM is a thermal relic:

- A weak scale annihilation x-sec gives correct abundance - Mass range is $10 \mathrm{keV} \lesssim m_{\chi} \lesssim 70 \mathrm{TeV}$

DM, the story so far

-DM makes up 23% of the universe

- Gravitates like ordinary matter, but is non-baryonic
-Is dark i.e. neutral under SM (not coloured, or charged)
-Does not interact much with itself $\left\lvert\, \frac{\sigma}{m} \approx 1 \mathrm{~cm}^{2} / g \sim\right.$ barn/ GeV
-Does not couple to massless particle
-Was not relativistic at time of CMB
-Is long lived
-Is BSM physics
IF DM is a thermal relic:
-A weak scale annihilation x-sec gives correct abundance - Mass range is $10 \mathrm{keV} \lesssim m_{\chi} \lesssim 70 \mathrm{TeV}$

LPOPs

Many models of BSM physics contain a parity

$$
\mathrm{SM} \rightarrow \mathrm{SM} \quad \mathrm{BSM} \rightarrow-\mathrm{BSM}
$$

e.g. R-parity in SUSY (proton decay)

T-parity in little higgs models (precision EW observables) KK-parity in extra-dimensional models

Lightest Parity Odd Particle is stable, may be a DM candidate

Always produced in pairs and leaves detector as MET

But such particles exist in MAMY BSM models

Particle theories

[Feng-US Cosmic Visions White papers]

Particle theories

[Feng-US Cosmic Visions White papers]

xked

Q : Are these different search strategies separate, redundant, complementary, relatable,....?

rect Detection "Master formul

$$
\frac{d R}{d E_{R}}=\frac{N_{T} \rho}{m_{\chi}} \int_{v_{\min }}^{v_{\max }} d^{3} v f(v(t)) \frac{d \sigma|v|}{d E_{R}}
$$

rect Detection "Master formul"

Recoil rate as a function of recoil energy

Depends on how much

DM is
around...

$$
\left(\frac{d R}{d E_{R}}=\frac{\left.N_{x}\right) p}{m_{x}} \int_{v_{\min }}^{v_{\max }} d^{3} v f(v(t)) \frac{d \sigma|v|}{d E_{R}}\right.
$$

Number of targets in experiment

rect Detection "Master formul"

Recoil rate as a function of recoil energy

Depends on how much DM is around...

Number of targets in experiment
...and how it's moving...

rect Detection "Master formul"

Recoil rate as a function of recoil energy

Depends on how much DM is around...

Number of targets in experiment
...and how it's moving...
...and how it interacts with nuclei.

rect Detection "Master formul

Recoil rate as a function of recoil energy

Depends on how much

DM is
around...

Number of targets in experiment
...and how it's moving...
...and how it interacts with nuclei.

Underground laboratories

Billard et al. [I307.5458]

Threshold cuts off

Threshold cuts off

ndirect Detection "Master formula"

$$
\frac{d N}{d \Omega d E}(\psi)=\frac{1}{4 \pi \eta} \frac{f_{\chi}^{2} J(\psi)}{m_{\chi}^{2}} \sum_{i}\langle\sigma v\rangle_{i} \frac{d N^{i}}{d E_{\gamma}}
$$

Spectrum of particles in final state

$$
J(\psi)=\int_{\text {1.o.s. }} d s \rho(r)^{2}
$$

Line of sight integral

Dark Matter Indirect Detection

DM annihilates in our galaxy, or nearby dwarf galaxy e.g.
$\chi \chi \rightarrow p \bar{p}, e^{+} e^{-}$
$\chi \chi \rightarrow \nu \bar{\nu}$
$\chi \chi \rightarrow \gamma \gamma$
$\chi \chi \rightarrow$ SM SM

$$
\hookrightarrow \ldots+\gamma \gamma
$$

Look for antimatter in cosmic rays, does not point back to source, limited range.
PAMELA, AMSO2, Fermi
Point back to source, low cross section. IceCube, ANTARES, Super-K

Point back to source, spectral line, low rate Fermi, HESS

Point back to source, continuum with edge, backgrounds
Fermi, HESS
[Goodenough and Hooper, 2009]

[Goodenough and Hoc

$1-2 \mathrm{GeV}$ residual

Are the excess photons from the Galactic centre DM?

- Source is spherical, with the expected radial dependence - Cross section is close to thermal
- Centred in the right place
- Statistical significant, and Fermi-team sees it too
- Galactic centre is a confusing place
- Not as clear as a spectral line
- Milli-second pulsars (but we would have seen more, also spectrum different from those observed)
- Look at other DM "bright spots"--dwarf galaxies
- Cosmic ray anti-particles
- Correlated signals, LHC, direct detection
- Interesting times ahead

Ways to search for DM at colliders

Ways to search for DM at colliders

Use a full UV model (e.g. SUSY)

Complicated/interesting final state.
Tuned analyses
No clear relation between different search strategies

Q:Are these different search strategies separate, redundant, complementary, relatable,....?

A: traditionally there was no clear way to relate them

Ways to search for DM at colliders

Beltran et al. [1002.4137]
Consider only the DM is light "Maverick DM", or EFT
Straightforward relationship between DD and collider

"Monojet", monophoton, mono-top, mono-X,....
(really up to 2 jets,
with 2 jets not back
to back)

Ways to search for DM at colliders

Beltran et al. [1002.4137]
Consider only the DM is light "Maverick DM", or EFT
Straightforward relationship between DD and collider

"Monojet", monophoton, mono-top, mono-X,....
(really up to 2 jets,
with 2 jets not back
to back)

Mono-mania at the LHC

Operators

$$
\begin{aligned}
\mathcal{O}_{V} & =\frac{\left(\bar{\chi} \gamma_{\mu} \chi\right)\left(\bar{q} \gamma^{\mu} q\right)}{\Lambda^{2}}, \\
\mathcal{O}_{A} & =\frac{\left(\bar{\chi} \gamma_{\mu} \gamma_{5} \chi\right)\left(\bar{q} \gamma^{\mu} \gamma_{5} q\right)}{\Lambda^{2}} \\
\mathcal{O}_{t} & =\frac{\left(\bar{\chi} P_{R} q\right)\left(\bar{q} P_{L} \chi\right)}{\Lambda^{2}}+(L \leftrightarrow R), \\
\mathcal{O}_{g} & =\alpha_{s} \frac{(\bar{\chi} \chi)\left(G_{\mu \nu}^{a} G^{a \mu \nu}\right)}{\Lambda^{3}}
\end{aligned}
$$

SI, vector exchange
SD, axial-vector exchange

SI, scalar exchange

SI, scalar exchange

Typically consider each operator separately

Operators

$$
\begin{aligned}
\mathcal{O}_{V} & =\frac{\left(\bar{\chi} \gamma_{\mu} \chi\right)\left(\bar{q} \gamma^{\mu} q\right)}{\Lambda^{2}} \\
\mathcal{O}_{A} & =\frac{\left(\bar{\chi} \gamma_{\mu} \gamma_{5} \chi\right)\left(\bar{q} \gamma^{\mu} \gamma_{5} q\right)}{\Lambda^{2}} \\
\mathcal{O}_{t} & =\frac{\left(\bar{\chi} P_{R} q\right)\left(\bar{q} P_{L} \chi\right)}{\Lambda^{2}}+(L \leftrightarrow R), \\
\mathcal{O}_{g} & =\alpha_{s} \frac{(\bar{\chi} \chi)\left(G_{\mu \nu}^{a} G^{a \mu \nu}\right)}{\Lambda^{3}}
\end{aligned}
$$

SI, vector exchange
SD, axial-vector exchange

SI, scalar exchange
SI, scalar exchange

Typically consider each operator separately

Operators

$$
\mathcal{O}_{V}=\frac{\left(\bar{\chi} \gamma_{\mu} \chi\right)\left(\bar{q} \gamma^{\mu} q\right)}{\Lambda^{2}}
$$

$$
\mathcal{O}_{A}=\frac{\left(\bar{\chi} \gamma_{\mu} \gamma_{5} \chi\right)\left(\bar{q} \gamma^{\mu} \gamma_{5} q\right)}{\Lambda^{2}}
$$

Signal:

$19.7 \mathrm{fb}^{-1}(8 \mathrm{TeV})$

(Dominant)
Backgrounds:
(Dominant)
Backgrounds:

How to quantify nothing?

Light Mediators

For all but the lightest mediators EFT is good for direct detection

$$
\sigma(\chi N \rightarrow \chi N) \sim \frac{g_{q}^{2} g_{\chi}^{2}}{M^{4}} \mu_{\chi N}^{2}
$$

What fraction of collider events have momentum transfers sufficient to probe the UV completion?

$$
\frac{g_{q} g_{\chi}}{q^{2}-M^{2}} \xrightarrow{q^{2} \ll M^{2}} \frac{1}{\Lambda^{2}}
$$

$$
\Lambda^{2}=\frac{M^{2}}{g_{q} g_{\chi}}
$$

[PJF et al, I 203. I 662]

Dark matter invariant mass [GeV]

Unitarity bound $m_{x x}<\frac{\Lambda}{0.4}$
[Shoemaker and Vecchi,
I I | 2.5457]

Fraction of events where EFT breaks down may be non-negligible Depends on DM mass

[PJF et al, I203.|662] Vector coupling

Unitarity bound $m_{x x}<\frac{\Lambda}{0.4}$
[Shoemaker and Vecchi,
I I I2.5457]

Fraction of events where EFT breaks down may be non-negligible Depends on DM mass

What fraction of events have momentum transfers sufficient to probe the UV completion?
[Busoni, De Simone, Morgante, Riotto, I307.2253, I402.|275, I405.3|03]

$$
R_{\Lambda} \equiv \frac{\left.\frac{\mathrm{d}^{2} \sigma_{\mathrm{eff}}}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} \eta}\right|_{Q_{\mathrm{tr}}<\Lambda}}{\frac{\mathrm{d}^{2} \sigma_{\mathrm{eff}}}{\mathrm{~d} p_{\mathrm{T}} \mathrm{~d} \eta}}
$$

What fraction of events have momentum transfers sufficient to probe the UV completion?
[Busoni, De Simone, Morgante, Riotto, | 307.2253, I402.|275, I405.3103]

3
$-120 \mathrm{GeV} \leq p_{T} \leq 1 \mathrm{TeV},|\eta| \leq 2$

Cutting off theory at the mediator mass scale alters the bounds

Racco,Wulzer, Zwirner [I502.0470 I]

Simplified Models

"Integrate in" the mediator

New channels to search for!

Collider only sensitive to all 4 parameters over a narrow range

But mapping collider constraints to direct/indirect detection now requires assumptions

[PJF,Harnik,Kopp,Tsai]

 Light mediator severely weakens limit

tact limit

Light Mediators

Look for the light mediator directly-dijet resonance/angular distributions

Light Mediators

Look for the light mediator directly-dijet resonance/angular

 distributions

Light Mediators

Look for the light mediator directly-dijet resonance/angular

 distributions

Types of Simplified models

-channel scalar/psuedo-scalar

MFV: $\quad \lambda_{\chi} \phi \bar{\chi} \chi+\lambda_{U} \phi\left(Y_{U}^{i j} Q_{i} H U_{j}^{e}\right)$
Physics dominated by top

monojet

tops + MET

- Scalars have helicity suppressed annihilation, and SI DD
- Pseudo scalars do not, and have SD momentum suppressed DD

Types of Simplified models

channel scalar/psuedo-scalar

MFV requires DM or mediator to carry flavour $\lambda \phi_{i} \bar{\chi} q_{i}$
(Like in SUSY MFV allows for separation of I,2 from 3 gen.)

monojet

jets+MET

Majorana has only SD, Dirac has both
Dirac cannot be a thermal relic, Majorana can if > 100 GeV

Types of Simplified models

channel scalar/psuedo-scalar

MFV requires DM or mediator to " "squarks" wlo SUSY pr
(Like in SUSY MFV allows for separation of I,2 from 3 gen.)

monojet

jets+MET

Majorana has only SD, Dirac has both
Dirac cannot be a thermal relic, Majorana can if $>100 \mathrm{GeV}$

Types of Simplified models

;-channel vector/axial-scalar
(Higgs mode may be
Spontaneously broken $U(1)^{\prime}$ accessible, can alter physics)

Consistency of model? How does DM get mass, anomalies...

$$
m_{\chi} \lesssim \frac{\sqrt{4 \pi}}{g_{\chi}^{A}} M_{V}
$$

Bounds on dileptons, leptophobic Z'

- Vectors are SI
- Axial vectors SD
- If thermal often underproduced
monojet

Types of Simplified models

- Landscape of simplified models is broad and varied
- Spin/parity of DM and mediator
- MFV
- Kinetic mixing
- Higgs portal
- Vector DM
- Other dark sector states alter thermal history \& BRs
- Electroweak-inos, singlet-doublet DM, etc
[Chala, Kahlhoefer, McCullough, Nardini, Schmidt-Hoberg]

DM Simplified Model Exclusions ATLAS Preliminary March 2016

Complementarity

- Direct detection limited to DM above GeV , needs DM nearby moving in the right way
- No upper limit on mass probed, learn about DM in cosmos
- Indirect detection very sensitive to astrophysics
- Halo shapes can probe DM-DM interactions
- Collider searches have kinematic upper limit, no astrophysics systematics, but many others

Complementary taken together provide complete picture

Complementarity

. DM e.g. scattering off electrons in - Direct detectinn
Many exciting new ideas for probing light
semi/super conductors
marect detection very sensitive to astrophysics

- Halo shapes can probe DM-DM interactions
- Collider searches have kinematic upper limit, no astrophysics systematics, but many others

Complementary taken together provide complete picture

Complementarity

- Direct detection limited to DM above GeV , needs DM nearby moving in the right way
- No upper limit on mass probed, learn about DM in cosmos
- Indirect detection very sensitive to astrophysics
- Halo shapes can probe DM-DM interactions
- Collider searches have kinematic upper limit, no astrophysics systematics, but many others

Complementary taken together provide complete picture

"If you like laws and sausages, you should never watch either one being made"

Otto von Bismark

Why model builders build models...

Why model builders build models...

Clever field theory idea, cute new symmetry, deep new underlying principle

Why model builders build models...

Clever field theory idea, cute new symmetry, deep new underlying principle

or

Why model builders build models...

Clever field theory idea, cute new symmetry, deep new underlying principle

or

New data needs explaining, signal not being searched for

"Top down"

-Identify "grand problem" e.g. weak hierarchy, cosmological constant, flavour

- Introduce "grand principle" e.g. extra dimensions,
supersymmetry, new strong dynamics
-Define new theory obeying principle that has SM as long energy limit

Outcome: theoretically very appealing model, often highly correlated signals, complicated parameter space

A cautionary tale

OPAL Higgs search

A cautionary tale

OPAL Higgs search

A cautionary tale

OPAL Higgs search

New ALEPH search

Cranmer,Yavin, Beacham, Spagnolo

"Bottom up"

-Data disagrees with SM in some channel(s)

- Add new states and couplings to SM to explain deviations
- Must have some concept of minimality: degrees of freedom, parameters

Outcome: build up the new physics piece by piece, correlations may not be apparent initially, simple parameter space

Easy for us to talk...exchange MadGraph/SHERPA model files that contain a few dials

"Bottom up".... without anomaly

Bottom up without excess = "signal building"

- Build simple modules that contain interesting new signatures not necessarily contained in other models
- Motivate new analyses
-Again allows simple communication

"Bottom up".... without anomaly

Bottom up without excess = "signal building"

- Build simple modules that contain interesting new signatures not necessarily contained in other models
- Motivate new analyses
-Again allows simple communication

data

\geqslant "Bottom up"

Rules of model building

-"First do no harm"
-FCNC's, PEWT, LEP, B-physics, proton decay, existing searches,.. (often reason for new parity...DM)
-Describe physics with a local, Lorentz invariant, unitary field theory, causal

- Preserve gauge invariance, anomaly free - Prefer renormalizable field theories
-Occam's razor? cf. Hickam's Dictum
-Perturbativity
- Running of gauge couplings, unification

