

Nuclear Physics 2015 Long Range Plan

what does QCD matter look like away from the nucleus?

an ultimate temperature for a system of hadrons

Density of States vs Energy

- pre-OCD (1965!) observation that the number of hadrons increased exponentially with mass
- if that continued, heating a hadron system beyond some T_{0} would not be possible
- $\mathrm{T}_{0} \sim 170 \mathrm{MeV}$

compilation: Bill Zajc

```
It then happens that for an oxponential growth of }\rho(ri)\mathrm{ the system uses
up the energy to increase the temporature and the number of particles
only up to some temperature A& T ; but when }\mp@subsup{T}{0}{
easier to create new particles than to increase the tomperature; }\rho(\textrm{m}
```


QCD and the possibility of free quarks

PRL 34 (1974)1353

Superdense Matter: Neutrons or Asymptotically Free Quarks?
J. C. Collins and M. J. Perry

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, England
(Received 6 January 1975)
We note the following: The quark model implies that superdense matter (found in neu-tron-star cores, exploding black holes, and the early big-bang universe) consists of quarks rather than of hadrons. Bjorken scaling implies that the quarks interact weakly. An asymptotically free gauge theory allows realistic calculations taking full account of strong interactions.

PHYSICS REPORTS (Review Section of Physics Letters) 61, No. 2 (1980) 71-158. North-Holland Publishing Company

QUANTUM CHROMODYNAMICS AND THE THEORY OF SUPERDENSE MATTER

coining of quark-gluon plasma

The properties of superdense matter were always of interest for physicists. Now, relying upon QCD, we can say much more about them. When the energy density ε exceeds some typical hadronic value ($\sim 1 \mathrm{GeV} / \mathrm{fm}^{3}$), matter no longer consists of separate hadrons (protons, neutrons, etc.), but of their fundamental constituents, quarks and gluons. Because of the apparent analogy with similar phenomena in atomic physics we may call this phase of matter the QCD (or quark-gluon) plasma. Due to large similarity between QCD and QED the new theory benefits from the methods previously elaborated for QED plasma made of electrons and photons.

modern lattice $0 C D$ at $T>0$

crossover @ ~150 MeV

Screening at large r
with increasing T

OCD at $\mathrm{T}>0$ at colliders

QCD at $\mathrm{T}>0$ at colliders

quark gluon plasma

incoming Lorentz contracted nuclei

OCD at $\mathrm{T}>0$ at colliders

quark gluon plasma

hadrons headed toward detector

QCD at $\mathrm{T}>0$ at colliders

quark gluon plasma

hadrons headed toward detector
$\Delta t \sim 10 \mathrm{fm} / \mathrm{c} \sim 10^{-22} \mathrm{~s}$

heavy ion physics

- goals of these lectures:
- what do we know about OCD at high temperature?
- what are the limits of our understanding
- since the system created in heavy ion collisions is necessarily short lived and governed by the color charge, this is complicated, both experimentally and theoretically
- disclaimers:
- I am an experimentalist with the ATLAS and sPHENIX collaborations

Large Hadron Collider @ CERN

collide pairs of lead nuclei at $5 \mathrm{TeV} /$ nucleon pair center of mass collision energy
different data than the high energy LHC program but the same experiments are used
~ 1 month / year of data
~100 of the 3000 ATLAS authors work directly on this physics

Large Hadron Collider @ CERN

collide pairs of lead nuclei at $5 \mathrm{TeV} /$ nucleon pair center of mass collision energy
different data than the high energy LHC program but the same experiments are used
~ 1 month / year of data
~100 of the 3000 ATLAS authors work directly on this physics
the resulting QGP:
collision energy sets maximum temperature colliding nuclei set maximum size

Relativistic Heavy Ion Collider @ BNL

- 200 GeV collision energy
- long HI running times
- flexible collision species
- 2 experiments:

- STAR: large acceptance
- PHENIX (2001-2016) \rightarrow sPHENIX new rare probes / large acceptance detector (2023-)

$\sim 10^{4}$ particles created in the most head on collisions
equivalent of $\sim 10^{3} \mathrm{pp}$ collisions at once

event classification: centrality

ATLAS Calorimeters

multiplicity of charged particles

central AuAu collisions at RHIC

$0.5 * N_{\text {part,max }}(\sim 208) \times 8 \rightarrow$ $d N_{\text {ch }} / d \eta \sim 1700$
different behavior than pp collisions

transverse energy

increase in transverse energy with centrality

increase in transverse
energy per participant pair with centrality

PRL 109152303

Glauber model

model the distributions of nucleons
in nucleus
(Woods-Saxon for spherical nuclei)
$\rho(r) \propto \frac{1}{1+\exp \left(\frac{r-R}{a}\right)}$

> sample from that distribution to get a unique distribution of nucleons for each nucleus
for each nucleon in nucleus A ask if it hits a nucleon from nucleus B

if so, that is a "binary collision" and
the nucleons are "participants"
assume monotonic relationship between impact parameter and multiplicity

Miller, et al, Ann Rev Nuc Part 57 (2007) 205
C. Loizides, et al Software X 1-2 (2015) 13
C. Loizides, et al PRC 97054910

collision geometry

nucleon positions for the colliding nuclei for three different simulated collisions

varying the impact parameter, changes the shape and size of the region where the nuclei overlap

collision geometry

nucleon positions for the colliding nuclei for three different simulated collisions

varying the impact parameter, changes the shape and size of the region where the nuclei overlap

collision geometry

nucleon positions for the colliding nuclei for three different simulated collisions

varying the impact parameter, changes the shape and size of the region where the nuclei overlap

counting particles

before the collision: orientation
of the nuclei

counting particles

before the collision: orientation of the nuclei
after the collision: angular distribution of particles

thousands of events with approximately the same impact parameter
collision geometry
PLB 707330 (2012)

increasing eccentricity

collision geometry
PLB 707330 (2012)

gas: minimal interactions isotropic expansion

fluid: lots of interactions anisotropic expansion

gradual pressure change

hydrodynamics

$T^{\mu \nu}=(\epsilon+P) u^{\mu} u^{\nu}-P g^{\mu \nu}$

stress energy tensor

$\partial_{\mu} T^{\mu \nu}=0 \quad$ local energy/momentum conservation

- also need
- relation between ε and P: equation of state, calculated in lattice QCD
- initial conditions of the system: geometry of the the nucleus
- any conserved quantities
- ideal hydrodynamics:
- no viscosity and no dissipation

hydrodynamics with viscosity

$\frac{d N}{d \phi} \propto 1+2 v_{2} \cos \left[2\left(\phi-\Psi_{2}\right)\right]$
$\mathrm{v}_{2} \rightarrow$ amplitude of modulation

- observations:

- shows that v_{2} measurements can be used to constrain η / s (viscosity / entropy density)
- however, no one η / s value describes the data perfectly
- $\eta /$ s ought to depend on temperature and thus one value is an oversimplification
- correlation between the geometry of the initial state and the η / s
- need to constrain geometry to measure η / s

role of fluctuations

Alver \& Roland, Phys.Rev. C81 (2010) 054905

fluctuations in the nucleon position can create shapes any shape of the initial nucleon positions
\rightarrow not just \mathbf{v}_{2}, but $\mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5} \ldots$..can be measured

role of fluctuations

Alver \& Roland, Phys.Rev. C81 (2010) 054905

fluctuations in the nucleon position can create shapes any shape of the initial nucleon positions
\rightarrow not just \mathbf{v}_{2}, but $\mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5} \ldots$..can be measured

- v_{2} : overlap geometry (centrality dependent) \& fluctuations
- $\mathrm{V}_{\mathrm{N}>2}$: fluctuations only
- sensitivity to viscosity increases with N

hydrodynamic modeling (II)

initial energy density calculation: one collision including nucleon fluctuations and fluctuations within the nucleon

Schenke, PRL 108252301

these calculations sensitive to nuclear geometry and shear viscosity / entropy density ratio ($\mathrm{\eta} / \mathrm{s}$)

- why does QCD matter at extremely high temperature behave like a fluid?
- interactions between quarks and gluons drive fluid behavior but QCD known for asymptotic freedom at short distances
- η /s needed to describe QGP viscosity within a factor of a 2-3 of conjectured theoretical bound of $\eta / s=1 / 4 \pi$

| PRL 94, 111601 (2005) | PHYSIC AL | REVIEW | LET TERS |
| :--- | :--- | :--- | :--- | | week ending |
| :---: |
| 25 MARCH 2005 |

Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics

[^0]
Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics

$$
\text { P. K. Kovtun, }{ }^{1} \text { D. T. Son, }{ }^{2} \text { and A. O. Starinets }{ }^{3}
$$

${ }^{1}$ Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA ${ }^{2}$ Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA
${ }^{3}$ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada (Received 20 December 2004; published 22 March 2005)
The ratio of shear viscosity to volume density of entropy can be used to characterize how close a given fluid is to being perfect. Using string theory methods, we show that this ratio is equal to a universal value of $\hbar / 4 \pi k_{B}$ for a large class of strongly interacting quantum field theories whose dual description involves black holes in anti-de Sitter space. We provide evidence that this value may serve as a lower bound for a wide class of systems, thus suggesting that black hole horizons are dual to the most ideal fluids.

Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics

$$
\text { P. K. Kovtun, }{ }^{1} \text { D. T. Son, }{ }^{2} \text { and A. O. Starinets }{ }^{3}
$$

${ }^{1}$ Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA ${ }^{2}$ Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA
${ }^{3}$ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada (Received 20 December 2004; published 22 March 2005)
The ratio of shear viscosity to volume density of entropy can be used to characterize how close a given fluid is to being perfect. Using string theory methods, we show that this ratio is equal to a universal value of $\hbar / 4 \pi k_{B}$ for a large class of strongly interacting quantum field theories whose dual description involves black holes in anti-de Sitter space. We provide evidence that this value may serve as a lower bound for a wide class of systems, thus suggesting that black hole horizons are dual to the most ideal fluids.

using computing to constrain $\eta /$ s from data

Mean $p_{T}[\mathrm{GeV}]$

inputs: data from ALICE outputs: parameters in the hydrodynamic simulation

finding the viscosity

- constraints on visocosity from a Bayasian analysis of data from the LHC
- one of the main sources of uncertainty is the geometry of the initial state and the size of the hot spots created from a nucleon-nucleon collision

equation of state

PRL 114, 202301 (2015)
PHYSICAL REVIEW LETTERS

Constraining the Equation of State of Superhadronic Matter from Heavy-Ion Collisions Scott Pratt, ${ }^{1}$ Evan Sangaline, ${ }^{1}$ Paul Sorensen, ${ }^{2}$ and Hui Wang ${ }^{2}$

- really amazing to recover the lattice results from data

two big questions

- where does this behavior break down in T(and collision energy) and size
- why does OCD lead to a low viscosity liquid?

two big questions

- where does this behavior break down in T (and collision energy) and size
- the rest of this lecture
- why does OCD lead to a low viscosity liquid?
- the next lecture

RHIC Beam Energy Scan

at lower collision energies do QGP signals turn off?
is there evidence for a critical endpoint and 1st order phase transition?

$\mathrm{v}_{2} \& \mathrm{v}_{3}$ in pPb collisions

$\mathrm{v}_{2} \& \mathrm{v}_{3}$ in pPb collisions

$\mathrm{v}_{2} \& \mathrm{v}_{3}$ in pPb collisions

very similar to $A A$ results

$\mathrm{v}_{2} \& \mathrm{v}_{3}$ in pPb collisions

are the pA and $\mathrm{AA} \mathrm{v}_{\mathrm{N}}$ related to the same physics?

very similar to $A A$ results

variation of the small nucleus

dA

control the collision geometry by varying the small nucleus

variation of the small nucleus

dA

control the collision geometry by varying the small nucleus

does v2 reflect the geometry of the initial state in $\mathrm{p} / \mathrm{d}+\mathrm{A}$ as in $\mathrm{A}+\mathrm{A}$?

what can RHIC add?

RHIC had huge d+Au sample 25x smaller collision energy than the LHC

a small QGP?

pA

small ε_{2}
dA

${ }^{3} \mathrm{HeA}$

large $\varepsilon 3$ small $\varepsilon 3$

$$
\varepsilon_{n}=\frac{\sqrt{\left\langle r^{2} \cos n \phi\right\rangle^{2}+\left\langle r^{2} \sin n \phi\right\rangle^{2}}}{\left\langle r^{2}\right\rangle}
$$

control the collision geometry by varying the small nucleus

geometry and hydrodynamics in small systems

hydrodynamic evolution of $\mathrm{pAu}, \mathrm{dAu}$ and 3 HeAu collisions

geometry and hydrodynamics in small systems

v_{2}, v_{3} from pAu, dAu, 3HeAu compared to two hydrodynamic models (SONIC \& iEBE-VISHNU)

pp collisions?

ATLAS, PRC 96024908 (2016)

- evidence for similar v_{N} signals in pp collisions as well
- does that mean:
- QGP in pp collisions?
- vN is not evidence for hydrodynamics in AA collisions?
- something else?
- what is the smallest size QGP you could make?
this is an area of very active discussion

Weller \& Romatschke, PLB 774351
Mace et al PRL 121052301
Nagle \& Zajc, 1808.01276
M. Strikland, Quark Matter 2018
plus many experimental papers

summary of part 1

- - the matter created in heavy ion collisions, the QGP, is well described by hydrodynamics with a very small η / s
- active investigation into the limits of this statement
- lower collision energy
- smaller collision systems, even down to pp collisions
- tomorrow:
- how do we understand how this matter works?

extras

two particle correlations

$$
\begin{aligned}
\frac{d N}{d \phi} & \propto 1+\sum^{n} 2 v_{n} \cos n\left(\phi-\Psi_{n}\right) \\
\frac{d N_{A B}}{d \Delta \phi} & \propto 1+\sum^{n} 2 v_{n, A} v_{n, B} \cos (n \Delta \phi)
\end{aligned}
$$

two particle correlations

jets in pp collisions

flow

single particles

$$
\frac{d N}{d \phi} \propto 1+\sum_{\substack{n}}^{\sum_{\text {pairs of particles }}^{n} 2 v_{n} \cos n\left(\phi-\Psi_{n}\right)}
$$

$$
\frac{d N_{A B}}{d \Delta \phi} \propto 1+\sum^{n} 2 v_{n, A} v_{n, B} \cos (n \Delta \phi)
$$

flow correlations should be long range η

correlations in PbPb

correlations in PbPb

correlations in PbPb

ridge: v_{N} \& two particle correlations

ridge: v_{N} \& two particle correlations

evidence for many higher order terms in particle correlations

[^0]: P. K. Kovtun, ${ }^{1}$ D. T. Son, ${ }^{2}$ and A. O. Starinets ${ }^{3}$
 ${ }^{1}$ Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
 ${ }^{2}$ Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA
 ${ }^{3}$ Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
 (Received 20 December 2004; published 22 March 2005)
 The ratio of shear viscosity to volume density of entropy can be used to characterize how close a given fluid is to being perfect. Using string theory methods, we show that this ratio is equal to a universal value of $\hbar / 4 \pi k_{B}$ for a large class of strongly interacting quantum field theories whose dual description involves black holes in anti-de Sitter space. We provide evidence that this value may serve as a lower bound for a wide class of systems, thus suggesting that black hole horizons are dual to the most ideal fluids.

