Reconstruction

Nhan Tran, Fermilab
Aug 30/31, 2018

Hadron Collider Physics Summer School 2018

Preface

You've heard excellent lectures on theory, experimental measurements and searches, and detector technologies

Reconstruction: algorithms to select/combine detector signals into representative physics observables for experimental analysis

Drawing off of other lectures:
Silicon Detectors, Calorimetry, Machine Learning, Heavy Ions, Precision Measurements, Fast Timing

Caveat l: my experience is in ATLAS/CMS style reconstruction, so I will focus on that, with a few special topics for heavy ions and bphysics.
Caveat 2: More CMS results mostly because I know where to find those plots more easily - but most everything I will say will be generic

TABLE OF CONTENTS

Part l: Building blocks

a. Charged particle tracking, vertexing
b. Precision Timing
c. Calorimetry

Part 2: Particle reconstruction
a. Muons
b. Photons/Electrons

c. Taus, Hadrons
d. special topic: LHCb RICH detector
e. Particle Flow

Part 3: Composite objects and beyond
a. Jets, MET
b. Jet substructure
c. Pileup Mitigation
c.ii. special topic: Underlying event in heavy ions
d. Displaced/Exotic objects

TABLE OF CONTENTS

Part 1: Building blocks

a. Charged particle tracking, vertexing
b. Precision Timing
c. Calorimetry

Part 2: Particle reconstruction
a. Muons
b. Photons/Electrons
c. Taus, Hadrons
d. special topic: LHCb RICH detector
e. Particle Flow

Part 3: Composite objects and beyond
a. Jets, MET
b. Jet substructure
c. Pileup Mitigation
c.ii. special topic: Underlying event in heavy ions
d. Displaced/Exotic objects

I'm drawing a lot from different sources, but great references are lectures from previous years of HCPSS.

Special credit to my predecessors at the FNAL school: Phil Harris and Rick Cavanaugh

INTRODUCTION

Collision

Physics process

Partons

Stable particles
Detector hits
Reconstructed quantites (momenta, charge energy, angles, ...)
List of ID'd reco. particles (e's, μ 's, γ 's, π 's, KL_{L} 's, etc)
Reconstructed partons
Physics process hypothesis

Courtesy: Rick Cavanaugh

CMS

ATLAS

LHCb

ALICE

Reconstruction Basics

Detectors are built in layers to detect different species of (semi-) stable particles

Goal: determine momentum, energy, charge, mass

Techniques:

Energy loss (dE/dx)
Total Energy (Edep)
Velocity (β)
Curvature ($1 / \rho$)

detectors are like ogres

MuDet: muon detectors
TrDet: trace detector + vertex detector EMCal: elekcromagnetic caloriméter HCal: hadron caloriméter

BIG PICTURE GOALS

Introduce the basic way we identify particle types and measure particle properties

Important: the resolution effects associated with performance of that reconstruction

Next:
Explore the complementarity of those measurements
Build up those objects to get to more complex objects

Goals:

Understand why we have all these different layers of detector and how they complement each other!
Understand reconstruction strategies, from the simplest to the most complex objects, and the physics concepts behind them

1. BUILDING BLOCKS

Tracking, Timing, Calorimetry
Some overlap with previous lectures, but I'll pull out the most relevant parts for reconstruction

Tracking

Charged particles in a strong magnetic field follow a helical trajectory with curvature proportional to momentum

Determine track parameters:

- pT
- theta, phi
- impacts parameters: d0, dz

Tracking challenge

Precise, high-granularity silicon pixel and strip detectors are the workhorse

Muon trackers have to economically cover a lot of ground! Example are gaseous drift tube detectors

TRACKING STEPS

Tracking in the inner tracking volume is an important and compute intensive task

A constant challenge and one of the big bottlenecks in the reconstruction chain
Combinatorics are huge!

4 Basic Steps:

Seeding: initial candidate from a few hits Finding: extrapolating from seeds with Kalman filter
Fitting: smooth trajectory and fit params
Selection: apply quality cuts

Cf. Silicon detector lectures from C. Mills

FITTIING FOR MOMENTUM

To get the pT of the track, we fit for its curvature Useful formula:

$$
p_{T}[\mathrm{GeV} / \mathrm{c}]=0.3 \times B[T] \times r[m]
$$

The full momentum is related by the polar angle

> Lorentz Force
> $\vec{F}_{L}=q \cdot \vec{v} \times \vec{B}$
> Centripetal Force
> $F_{c}=m \cdot v^{2} / r$
> $p=q \cdot B \cdot r$

$$
p=\frac{p_{T}}{\sin \lambda}
$$

MOMENTUM RESOLUTION

The transverse momentum resolution is driven by:
Curvature measurement and hit resolution Multiple scattering

$$
\left(\frac{\frac{\delta p}{p}}{p}\right) \frac{0.0136}{\beta} \sqrt{\frac{X}{X_{0}}} \frac{1}{0.3 B L} \frac{\sqrt{4 A_{N}}}{N}
$$

$$
\left(\frac{\sigma_{p_{T}}}{p_{T}}\right)^{2} \propto c_{\text {curvature }}^{c_{1} \cdot\left(\frac{p_{T}}{B L^{2}} \sqrt{\frac{720}{N+4}}\right)^{2}+c_{\text {multiple scattering }} c_{2} \cdot\left(\frac{1}{B \sqrt{L X_{0}}}\right)^{2}}
$$

MOMENTUM RESOLUTION

Vertex reconstrudtion [z]

Use Z position of the primary vertex to separate pileup (much more on this later)

VERTEX RECONSTRUCTION [XY]

Use impact parameter of the secondary vertex to identify displaced vertices

IMPACT PARAMETER RESOLUTION

The main drivers of the vertex resolution are the position measurement and the lever arm of the measurement (how far are you away from the vertex)

For example:

$$
\sigma_{d_{0}}^{2}=\frac{r_{2}^{2} \sigma_{1}^{2}+r_{1}^{2} \sigma_{2}^{2}}{\left(r^{2}-r^{1}\right)^{2}}+\sigma_{M S}^{2}
$$

IMPACT PARAMETER RESOLUTION

The main drivers of the vertex resolution are the position measurement and the lever arm of the measurement (how far are you away from the vertex)

For example:

$$
\sigma_{d_{0}}^{2}=\frac{r_{2}^{2} \sigma_{1}^{2}+r_{1}^{2} \sigma_{2}^{2}}{\left(r^{2}-r^{1}\right)^{2}}+\sigma_{M S}^{2}
$$

Primary vertex resolution

THE 4TH DIMENSION!

Precision fast timing has promise to be a powerful additional piece of information for reconstruction

There are plans by ATLAS and CMS to include precision timing detectors for HL-LHC upgrades

Preliminary!

Resolution for charged particles is around $\sim 30 \mathrm{ps}$.

Neutral resolution is energy dependent: ~30-300 ps for 100-few GeV

Time of flight can be used to disentangle the origin of particles as well - particularly useful for neutral particles

VERTEXING WITH TIMING!

In future conditions of ~ 200 pileup, timing can be used to disentangle pileup vertices. Proton beam crossing spread out of z and time!

4D RECONSTRUCTION

CMS Simulation $<\mu>=200$

TIMING PERFORMANCE IMPROVEMENTS

CALORIMETER RECONSTRUCTION

Cf. Calorimetry lectures from R. Wigmans A reminder of the basics: energy resolution and characteristic size of electromagnetic and hadronic showers

Resolution:

Noise term:
fixed vs. energy
Typically important at low energies

Stochastic term:
Error is $\sim E^{-1 / 2}$, as a counting error

Constant term: instrumental effect, shower leakage, etc.

EXAMPLE: ATLAS EM CALORIMETER

Hadronic Calorimeterrs

Note the
change in
scale!!

SHOWER SIZE AND ENERGY RESOLUTION

Another important consideration in reconstruction are the size of the showers
EM showers are much smaller, uniform
Hadronic showers are larger, less-uniform
Important concept

$$
X_{0}=\frac{716.4 \mathrm{~g} \mathrm{~cm}^{-2} A}{Z(Z+1) \ln (287 / \sqrt{Z})}
$$

X_{0}, radiation length: characteristic length of a energy loss of particles interacting electromagnetically

Moliere radius: transverse size of the shower is related to X_{0}

$$
R_{M}=0.0265 X_{0}(Z+1.2)
$$

$\boldsymbol{\lambda}$, interaction length: characteristic length of particles interacting with nuclei

NICE RESOURCE

http://pdg.lbl.gov/2017/AtomicNuclearProperties/

Atomic and nuclear properties of iron (Fe)

\longrightarrow	Nuclear collision length	81.7	$\mathrm{~g} \mathrm{~cm}^{-2}$	1037	cm
Nuclear interaction length	132.1	$\mathrm{~g} \mathrm{~cm}^{-2}$	16.77	cm	
Pion collision length	107.0	$\mathrm{~g} \mathrm{~cm}^{-2}$	13.59	cm	
Pion interaction length	160.8	$\mathrm{~g} \mathrm{~cm}^{-2}$	20.42	cm	
Radiation length	13.84	$\mathrm{~g} \mathrm{~cm}^{-2}$	1.757	cm	

> For high Z materials $$
X_{0} \ll \lambda
$$

MINI-SUMMARY

The different detector technologies and their intrinsic resolution are complementary!

As one starts to get worse, the other starts to get better
Tracking has the best intrinsic spatial resolution

Representative numbers for the CMS case

Detector	p_{T}-resolution	$\eta /$-s-segmentation
Tracker	$0.6 \%(0.2 \mathrm{GeV})-5 \%(500 \mathrm{GeV})$	0.002×0.003 (first pixel layer)
ECAL	$1 \%(20 \mathrm{GeV})-0.4 \%(500 \mathrm{GeV})$	0.017×0.017 (barrel)
HCAL	$30 \%(30 \mathrm{GeV})-5 \%(500 \mathrm{GeV})$	0.087×0.087 (barrel)

Vertexing numbers:
Primary vertex resolution: ~25-100 mm
Timing detector resolution: $\sim 30-300 \mathrm{ps}$
2. PARTICLE RECONSTRUCTION

Muons

Because of it's long lifetime - the muon is a stable particle for our purposes (c $\tau=700 \mathrm{~m}$)

It does not feel the strong interaction, so it's only minimum ionizing particle
... except at high energies where it acts like an electron (> 1 TeV)

Muon detectors

MUON ID

Muons are very penetrating and primarily interacts as a MIP Very high ID efficiency!

MUON MOMENTUM RESOLUTION

The muon system should be very efficient for identifying muons

Momentum measurements important at the trigger level And also for high pT muons

Electrons

The problem with electrons...
They interact a lot more! Primarily through bremsstrahlung
Energy loss from bremsstrahlung:
(energy loss is proportional to energy)

$$
-\frac{d E}{d x}=\frac{E}{X_{0}}
$$

Electrons

The problem with electrons...
They interact a lot more! Primarily through bremsstrahlung Energy loss from bremsstrahlung:
(energy loss is proportional to energy)

$$
-\frac{d E}{d x}=\frac{E}{X_{0}}
$$

Mind your material!

Important to consider the material
budget in the tracker detector design

Complications with electrons

The tricky part of electron tracking is accounting for radiation loss from bremsstrahlung along the track trajectory

Electron undergoes brem $\sim 70 \%$ of the time Photon converts to e+e- pair 50\% of the time

Recover brem particles along the ϕ trajectory of the track because of the magnetic field

Tracking has to account for energy loss

Gaussian Sum Filter tracking = extension of
Kalman Filter algorithm with a sum of Gaussians weighted by radiation probability

Complications with electroons

Electron performance

$|\Delta \eta|$ $|\Delta \phi|$ H / E_{SC}
$\sigma_{\eta \eta}$
$\left|1 / E_{S C}-1 / p\right|$
$\operatorname{IsopF}^{(\Delta \mathrm{R}=0.3)} / p_{\mathrm{T}}$
$\left|d_{0}\right|$
$\left|d_{z}\right|$
Missing hits
Conversion-fit probability

What variables go into the selection?

Identifying prompt and isolated photons important
Particularly for analyses like $\mathrm{H}(\mathrm{y} \mathrm{\gamma})$
Primary variables for photon identification are shower-shape and isolation (more on this later) variables

No matched track to separate from electrons
signal Isolated FSR photons from Z $\mu \mu$
background Photons from jets

Charged Hadron

 CalorimeterHadron
Calorimeter
Superconducting Solenoid

$$
0
$$

1 m
2 m
3 m
Iron return yoke interspersed with Muon chambers
4 m 6 m

7 m

[CHARGED] HADRONS

Match tracks to hadronic clusters to form charged hadrons Again, mind your materials!

The tracker material acts as a hadronic preshower (for both charged and neutral hadrons)

Complications with hadrons

Nuclear interactions often result in kinks in the track or a production of secondary particles Can be recovered with displaced track reconstruction

Map of nuclear interactions

To avoid double counting, nuclear interactions need to be identified and combined into primary particles (part of particle flow, see later)

SUMMARY: CHARGED PARTICLE TRACKING

Muons

Pions

Electrons

Side-by-side comparison of muon, pion, electron tracking efficiency - this illustrates the challenge of tracker material for charged hadrons and electrons

Taus

Massive and relatively long lived $\mathrm{m}(\mathrm{T})=1.7 \mathrm{GeV}$

$$
\mathrm{CT}=87 \mu \mathrm{~m}
$$

40% of the time 60% of the time

Leptonic tau reconstruction relies on missing energy from the neutrinos

Three Hadrons

TAU PERFORMANCE

A NOTE ON IsOLATION

So far isolation has been mentioned in many contexts

Isolation very important to identify prompt muon, electron, photon, tau signals

For example:
Prompt:
Hadronic Tau vs. jet
Photon vs. jet
Muon vs. b jet

Isolation: the extra amount of energy around the object of interest

Often relative isolation is the quantity of interest Will come back to this later with pileup discussion

Special topic: LHCb RICH Detector

Hadron ID is very important, particular in b physics
LHCb has a dedicated detector, RICH, for particle ID RICH: Ring Imaging Cherenkov Detector

Cherenkov radiation: Particles moving in material with index of refraction greater than l travel faster than the speed of light and emit radiation at an angle θ_{c}

$$
\cos \theta_{c}=\frac{1}{\beta n}
$$

LHCB REMINDER

By measuring the track momentum and $\boldsymbol{\theta}_{\mathrm{c}}$, one can identify the particle type

$\mathrm{RICHl}=$ aerogel and $\mathrm{C}_{4} \mathrm{~F}_{10}$ gas RICH2 $=\mathrm{CF}_{4}$ gas

LHCB RICH EFFECT

LHCB RICH EFFECT

End of lecture 1

Tomorrow: Let's get ADVANCED

Particle flow
Jets and MET
Jet substructure
Pileup and underlying event in HI Exotic and beyond

