Reconstruction

Nhan Tran, Fermilab Aug 30/31, 2018

Hadron Collider Physics Summer School 2018

PREFACE

You've heard excellent lectures on theory, experimental measurements and searches, and detector technologies

Drawing off of other lectures: Silicon Detectors, Calorimetry, Machine Learning, Heavy Ions, Precision Measurements, Fast Timing

Caveat 1: my experience is in ATLAS/CMS style reconstruction, so I will focus on that, with a few special topics for heavy ions and bphysics.

Caveat 2: More CMS results mostly because I know where to find those plots more easily — but most everything I will say will be generic

Reconstruction: algorithms to select/combine detector signals into representative physics observables for experimental analysis

TABLE OF CONTENTS

Part 1: Building blocks

- a. Charged particle tracking, vertexing
- b. Precision Timing
- c. Calorimetry

Part 2: Particle reconstruction

- a. Muons
- b. Photons/Electrons
- c. Taus, Hadrons
- d. special topic: LHCb RICH detector
- e. Particle Flow

Part 3: Composite objects and beyond

- a. Jets, MET
- b. Jet substructure
- c. Pileup Mitigation

c.ii. special topic: Underlying event in heavy ions

d. Displaced/Exotic objects

TABLE OF CONTENTS

Part 1: Building blocks

- a. Charged particle tracking, vertexing
- b. Precision Timing
- c. Calorimetry

Part 2: Particle reconstruction

- a. Muons
- b. Photons/Electrons
- c. Taus, Hadrons

d. special topic: LHCb RICH detector

e. Particle Flow

Part 3: Composite objects and beyond

- a. Jets, MET
- b. Jet substructure
- c. Pileup Mitigation

c.ii. special topic: Underlying event in heavy ions

d. Displaced/Exotic objects

I'm drawing a lot from different sources, but great references are lectures from previous years of HCPSS.

Special credit to my predecessors at the FNAL school: Phil Harris and Rick Cavanaugh

A LOT OF GROUND TO COVER! MY STRATEGY: GIVE YOU AN IDEA OF MANY THINGS RATHER THAN FOCUS ON A FEW

Lecture 1

Lecture 2

INTRODUCTION

Collision Physics process Partons Stable particles Detector hits Reconstructed quantites (momenta, charge energy, angles, ...) List of ID'd reco. particles (e's, μ 's, γ 's, π 's, Kl's, etc) Reconstructed partons Physics process hypothesis

Courtesy: Rick Cavanaugh

PARTICLE IDENTIFICATION

Innermost Layer...

CMS

LHCb

L3 Magnet

Electromagnetic Calorimeter

Inner Tracking System, Time Projection Chamber, Transition Radiation Detector & Time of Flight Detector

RECONSTRUCTION BASICS

Detectors are built in layers to detect different species of (semi-) stable particles

Goal: determine momentum, energy, charge, mass

Techniques: Energy loss (dE/dx) Total Energy (Edep) Velocity (β) Curvature $(1/\rho)$

DETECTORS ARE LIKE OGRES

neutral hadron photon EMCal **HCal** MuDet

> MuDet: muon detectors TrDet: trace detector + vertex detector EMCal: elekcromagnetic caloriméter HCal: hadron caloriméter

BIG PICTURE GOALS

Introduce the basic way we identify particle types and measure particle properties Important: the resolution effects associated with performance of that reconstruction

Next: Explore the **complementarity** of those measurements

Build up those objects to get to more complex objects

Goals:

Understand why we have all these different layers of detector and how they complement each other! Understand reconstruction strategies, from the simplest to the most complex objects, and the physics concepts behind them

1. BUILDING BLOCKS

Tracking, Timing, Calorimetry Some overlap with previous lectures, but I'll pull out the most relevant parts for reconstruction

TRACKING

trajectory with curvature proportional to momentum

- Determine track parameters: - pT
 - theta, phi
 - impacts parameters: d0, dz

Charged particles in a strong magnetic field follow a helical

TRACKING CHALLENGE

Precise, high-granularity silicon pixel and strip detectors are the workhorse

Muon trackers have to economically cover a lot of ground! Example are gaseous drift tube detectors

TRACKING STEPS

Tracking in the inner tracking volume is an important and compute intensive task A constant challenge and one of the big bottlenecks in the

reconstruction chain Combinatorics are huge!

4 Basic Steps:

Seeding: initial candidate from a few hits Finding: extrapolating from seeds with Kalman filter Fitting: smooth trajectory and fit params Selection: apply quality cuts

Cf. Silicon detector lectures from C. Mills

Seeding ayers

FITTING FOR MOMENTUM

To get the pT of the track, we fit for its curvature Useful formula:

$p_T[V_{Q}/C] = 0.3 \mathbb{R}[T_{T}] \times r[m]$

MOMENTUM RESOLUTION

The transverse momentum resolution is driven by: Curvature measurement and hit resolution Multiple scattering $\sigma_{_{T}} \propto p$

$$\left(rac{\sigma_{p_T}}{p_T}
ight)^2 \propto c_1 \cdot \left(rac{p_T}{BL^2}\sqrt{T}
ight)^2$$

 p_T

 σ

p

 $\propto p_T \cdot \sigma_{r\varphi}$

 $B \mid LX$

MOMENTUM RESOLUTION

VERTEX RECONSTRUCTION [Z]

Use Z position of the primary vertex to separate pileup (much more on this later)

VERTEX RECONSTRUCTION [XY]

Use impact parameter of the secondary vertex to identify displaced vertices

IMPACT PARAMETER RESOLUTION

The main drivers of the vertex resolution are the position measurement and the lever arm of the measurement (how far are you away from the vertex)

For example:

$$\sigma_{d_0}^2 = \frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{\left(r^2 - r^1\right)^2} + \sigma_{MS}^2$$

(mm) N 0 tion Resol

IMPACT PARAMETER RESOLUTION

The main drivers of the vertex resolution are the position measurement and the lever arm of the measurement (how far are you away from the vertex)

For example:

р

$$\sigma_{d_0}^2 = \frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{\left(r^2 - r^1\right)^2} + \sigma_{MS}^2$$

g

PRIMARY VERTEX RESOLUTION

~similar performance of the vertex resolution in x,y too

THE 4TH DIMENSION!

Precision fast timing has promise to be a powerful additional piece of information for reconstruction There are plans by ATLAS and CMS to include precision timing detectors for HL-LHC upgrades

Time of flight can be used to disentangle the origin of particles as well — particularly useful for neutral particles

Preliminary!

Resolution for charged particles is around ~30 ps.

Neutral resolution is energy dependent: ~30-300 ps for 100-few GeV

VERTEXING WITH TIMING!

4D RECONSTRUCTION

TIMING PERFORMANCE IMPROVEMENTS

<u>Ч</u> tracks/signal of pile #

tracks/signal 0 JC

29

CALORIMETRY

CALORIMETER RECONSTRUCTION

H

Cf. Calorimetry lectures from R. Wigmans A reminder of the basics: energy resolution and characteristic size of electromagnetic and hadronic showers

Resolution:

fixed vs. energy Typically important at low energies

counting error

EXAMPLE: ATLAS EM CALORIMETER

HADRONIC CALORIMETERS

SHOWER SIZE AND ENERGY RESOLUTION

Another important consideration in reconstruction are the size of the showers EM showers are much smaller, uniform Hadronic showers are larger, less-uniform

Important concept

Xo, radiation length: characteristic length of a energy loss of particles interacting electromagnetically Moliere radius: transverse size of the shower is related to X₀ $R_M = 0.0265 X_0 (Z + 1.2)$

 λ , interaction length: characteristic length of particles interacting with nuclei

$$X_0 = \frac{716.4 \text{ g}}{Z(Z+1) \text{ l}}$$

34

NICE RESOURCE

http://pdg.lbl.gov/2017/AtomicNuclearProperties/

	0 ⁿ																
	1 ^{Ps}																
	1H																Γ
	₃ Li	4Be											5 ^B	6 C	7N	8 O	Γ
	11Na	12Mg											13Al	14 ^{Si}	15 ^P	16 ^S	1
	19K	20 ^{Ca}	21 ^{Sc}	22 ^{Ti}	23 ^V	24 ^{Cr}	25 ^{Mn}	26 ^{Fe}	27 ^{Co}	28 <mark>Ni</mark>	29 ^{Cu}	30Zn	31Ga	32Ge	33As	34Se	3
	37Rb	38 <mark>S</mark> r	39Y	40Zr	41Nb	42 ^{Mo}	43Tc	44Ru	45Rh	46 ^{Pd}	47Ag	48Cd	49 ^{In}	50 ^{Sn}	51Sb	52 ^{Te}	
	55 ^{Cs}	56 ^{Ba}	57 ^{La}	72Hf	73 ^{Ta}	74 ^W	75 ^{Re}	76 ^{Os}	77 ^{Ir}	78 ^{Pt}	79 ^{Au}	80Hg	81 ^{Tl}	82Pb	83Bi	84 ^{Po}	8
	87 ^{Fr}	88Ra	89Ac	104Rf	105 ^{Db}	106 ^S g	107 ^{Bh}	108Hs	109 ^{Mt}	110 ^{Ds}	111Rg	112 ^{Cn}	113 ^{Nh}	114 ^{Fl}	115Mc	116 ^L v	1
			58 ^{Ce}	59Pr	60 Nd	61 ^{Pm}	62 Sm	63 ^{Eu}	64 ^{Gd}	65 ^{Tb}	66 ^{Dy}	67 ^{Ho}	68 ^{Er}	69 Tm	70Yb	71 ^{Lu}	
			90Th	91Pa	92 ^U	93Np	94Pu	95Am	96 ^{Cm}	97 ^{Bk}	98Cf	99Es	100 ^{Fm}	101 ^{Md}	102 ^{No}	103 ^{Lr}	
and the second sec		=	-			_ 11	X			e - 1			=	1	17		
Inorganic compounds (Al through Fe)				A	Aluminum oxide through ferrous oxide												
Inorganic compounds (Freon through Pu)			Armin F	Freon through plutonium oxide										1			
Inorganic compounds (Potassium thru yttrium)) [F	Potassium iodide through water												
Inorganic scintillators (BaF2 through Y2SiO5)					Barium fluoride through Y2SiO5												
Simple organic compounds					Acetone through Xylene												
Polymers				F	Polymers												
Mixtures				A	Aerogel through standard rock												
Biological materials					A-mn-dimethyl_formamide through tissue-equivalent gas ᅌ												

Atomic and nuclear properties of iron (Fe)

Nuclear collision length	81.7	g cm ⁻²	10.37	cm
Nuclear interaction length	132.1	g cm ⁻²	16.77	cm
Pion collision length	107.0	g cm ⁻²	13.59	cm
Pion interaction length	160.8	g cm ⁻²	20.42	cm
Radiation length	13.84	g cm ⁻²	1.757	cm

For high Z materials $X_0 << \lambda$

Representative numbers for the CMS case

Detector p_T-resolution

Tracker

- η/Φ -segmentation 0.6% (0.2 GeV) – 5% (500 GeV) 0.002 x 0.003 (first pixel layer) 1% (20 GeV) – 0.4% (500 GeV) 0.017 x 0.017 (barrel) ECAL 30% (30 GeV) – 5% (500 GeV) 0.087 x 0.087 (barrel) HCAL

Vertexing numbers:

Primary vertex resolution: ~25-100 mm Timing detector resolution: ~30-300 ps

2. PARTICLE RECONSTRUCTION

Muo	41					
						2T
フルル Silicon						
Electromag	netic	///////////////////////////////////////				
Calorime						
	Had	ron				
	Calori	meter Sup	perconducting			
			Solenoid		Irn yoke inte	
0			3	_	Muon char	_
0 m	1 m	2 m	3 m	4 m	5 m	6 m

	4T					
						2T
フルル Silicon						
Electromag Calorime	ter					
	Had		orconducting			
	Calorir	neter Sup	erconducting Solenoid	Iron retu	ırn yoke inte Muon chan	
0 m	1 m	2 m	3 m	4 m	5 m	6 m

MUONS

Because of it's long lifetime — the muon is a stable particle for our purposes (c τ = 700m) It does not feel the strong interaction, so it's only minimum ionizing particle ... except at high energies where it acts like an electron (> 1 TeV)

MUON DETECTORS

MUON ID

Muons are very penetrating and primarily interacts as a MIP Very high ID efficiency! 2 fb⁻¹ (13 TeV) Efficiency Loose ID, $p_{\tau} \ge 20 \text{ GeV}$ CMS 1.05 - Data 2015 pp data nonm 0.95 0.6 0.9 Ľ Sot 0.85 0.4 0.8 Data/MC - Data .04 0.2 1.02 0.98 0.96 0 _2 _1.5 -0.5 0.5 1.5 2 ()4 5 6 7 3 10 **Muon** ղ

MUON MOMENTUM RESOLUTION

The muon system should be very efficient for identifying muons

at the trigger level And also for high pT muons

62 4T Photon

E

Silicon Tracker Electromag Calorime	netic	ron	erconducting Solenoid	Iron retu		-
0 m	1 m	2 m	3 m		Muon char 5 m	

Electron 4T

E

Silicon Tracker Electromag Calorime	netic	ron	erconducting Solenoid			2T • • • • • • • • • • • • • • • • • • •
0 m	1			with	Muon char 5 m	nbers
0 m		2 m	5 m	4 m 		

ELECTRONS

The problem with electrons... Energy loss from bremsstrahlung: (energy loss is proportional to energy)

dE	
dx	$\overline{X_0}$

They interact a lot more! Primarily through bremsstrahlung

ELECTRONS

The problem with electrons... Energy loss from bremsstrahlung: (energy loss is proportional to energy)

> Ē dEdx

They interact a lot more! Primarily through bremsstrahlung Electron

Nucleus

Mind your material!

Important to consider the material budget in the tracker detector design

COMPLICATIONS WITH ELECTRONS

The tricky part of electron tracking is accounting for radiation loss from bremsstrahlung along the track trajectory

Electron undergoes brem ~70% of the time Photon converts to e+e- pair 50% of the time

Recover brem particles along the ϕ trajectory of the track because of the magnetic field

Tracking has to account for energy loss Gaussian Sum Filter tracking = extension of Kalman Filter algorithm with a sum of Gaussians weighted by radiation probability

COMPLICATIONS WITH ELECTRONS

PHOTONS

Identifying prompt and isolated photons importan Particularly for analyses like $H(\gamma\gamma)$ Primary variables for photon identification are sho isolation (more on this later) variables No matched track to separate from electrons

signa Isolated FSR photons from Ζμμ

background Photons from jets

Events 10 Data/MC

C)

0

10²

Charged Hadron

Ε

Silicon Tracker Electromagneti Calorimeter	Hadron					
C	alorimeter	Supercond				
		Solenc	oid Iro	on return yok	-	
0 m 1 i	m 🤉	~ 2,		with Muon m 5		5 m
	m 21	m 3 r				H

Neutral Hadron

Ε

Silicon Tracker Electromag Calorime	netic	ron	erconducting Solenoid		
0 m	1 m	2 m	3 m	n Muon char 5 m	

[CHARGED] HADRONS

Match tracks to hadronic clusters to form charged hadrons Again, mind your materials! The tracker material acts as a hadronic preshower (for both charged and neutral hadrons)

COMPLICATIONS WITH HADRONS

Nuclear interactions often result in kinks in $\widehat{\xi}$ 50 cms production Can be red 30 track reco

To avoid double counting, nuclear interactions need to be identified and combined into primary particles (part of particle flow, see later)

SUMMARY: CHARGED PARTICLE TRA

Muons

Pions

TAUS

 $m(\tau) = 1.7 \, GeV$ ct= 87 µm

Leptonic tau reconstruction relies on missing energy from the neutrinos

HADRONIC TAUS

TAU PERFORMANCE

ency

A NOTE ON ISOLATION

dz < 0.2 cm

So far isolation has been mentioned in many contexts

Isolation very important to identify prompt muon, electron, photon, tau signals

For example: Prompt: Hadronic Tau vs. jet Photon vs. jet Muon vs. b jet

Isolation: the extra amount of energy around the object of interest Often relative isolation is the quantity of interest Will come back to this later with pileup discussion

SPECIAL TOPIC: LHCB RICH DETECTOR

Hadron ID is very important, particular in b physics

LHCb has a dedicated detector, RICH, for particle ID **RICH: Ring Imaging Cherenkov Detector**

Cherenkov radiation: Particles moving in material with index of refraction greater than 1 tayel faster than the speed of light and emit radiation at an angletic University of Illinois at Chicago

 $\cos \theta_c$

LHCB REMINDER

PARTICLE ID

RICH1 = aerogel and C₄F₁₀ gas $RICH2 = CF_4 gas$

PARTICLE ID

Carbon Fiber Exit Window

LHCB RICH EFFECT

LHCB RICH EFFECT

Tomorrow: Let's get ADVANCED

End of lecture 1

Particle flow Jets and MET Jet substructure Pileup and underlying event in HI Exotic and beyond