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Who am 17

e | am an Associate Professor at MIT and | work on the LHCb experiment. Prior to joining the
faculty at MIT in 2012, | was a postdoc at Imperial College London 2008-2012, a grad
student at Carnegie Mellon, ...

e | am NOT a dedicated ML specialist. | am a physicist. | write a lot of phenomenology,
LHCb, and technical papers.

e But | did write the primary LHCb b-physics trigger algorithm — and for the start of Run 1
this was already using an ML algorithm! (With a custom loss definition.) This algorithm,
including its Run 2 update, has collected the data used in ~300 papers to date.

e | also co-led (with Phil liten and Yandex colleagues) the proliferation of ML usage
throughout the LHCb trigger in Run 2. | have used ML in many LHCb publications, etc.

e | co-wrote the first (to my knowledge) HEP paper that presented a dedicated HEP-specific
loss function.

e | approach ML like everything else in physics: | try and understand the concepts, develop/
use intuition, etc. The main goal of these lectures is to focus on the core concepts of ML
and its usage in HEP. Alex has written an excellent tutorial to help you start to learn the
technicalities.
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The Short-Short Version

‘ ‘ | \

We use ML almost everywhere—to enable great science!

Out of an abundance of laziness, I've reused a lot of slides from previous talks. The end result is
Mike Williams LHCb-heavy on examples. For the most part, all experiments are using ML in similar ways.




Overview

According to wikipedia: Machine learning is a field of computer science that

gives computers t

ne ability to learn (i.e., progressively improve performance on

a specific task) wit

N data, without being explicitly programmed.

It IS, In fact, a very broad field of study—and one whose use Iin particle physics
IS rapidly becoming ubiquitous.

Particle physics experiments produce some of the largest data sets in the

world: O(PB/s) —

zero suppression = O(10 TB/s) = event filtering = O(GB/Ss)

permanent storage (multiply these by 10 for the HL-LHC era).

| et’s start with a

common task in particle physics: classification. We classify

candidates (or events/reactions) as signal or background, we classify particles
according to their types (particle ID), etc.

Classification task

Mike Williams

are now routinely done using ML. How? Why"?



Classification

Consider two types of objects, (Ho) background and (H1) signal, what is the optimal way to
select a region to study the signal?

rectangular cuts Nn-D manifold (some function of xn)

[images: G Cowan]

Problem solved in 1933: Neyman & Pearson proved that optimal boundaries are given by
likelihood-ratio isobars; i.e. keep the regions with A(xn) > some constant.

Mike Williams



The Problem

Unfortunately, we rarely (if ever) actually know the PDFs, which means that
we cannot construct the likelihood ratio.

PDF(Xn,pm) = [PhysiCs](Xa,Ppm)
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Instead, we use simulation to produce many examples
of a signal event (but not a PDF). So, now what?
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One Solution

In one dimension, we can use these examples to build a PDF, e.g. using a histogram, a
kernel, or assuming some parametric function and fitting it to the examples (perhaps we
leave some nuisance parameters free later).
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Physicists are good at feature engineering, many analyses boil 10M sensors down to a single
feature (e.g. the mass). However, if we need a PDF in more than ~2 dimensions, the curse of
dimensionality requires exponentially larger samples. Is there a better way?
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A Better Solution

Using examples of signal and background, we want to learn a function, F(x»), that provides
the same power as the likelihood ratio would — but without requiring that we know the PDFs
(clearly, any monotonic function of the form F(/A(xn)) will do this).

Inputs  Weights Net input Activation
function function

output

N.b., this is just a very complicated
function of the form F(xn;wm)! The
deeper the network, the more complex
structures we can (easily) generate.

Now, just choose a quantity to optimize, and use gradient descent to learn the weights, wm.
Ideally the result is F(/A\(xn)), though we don’t know F so can’t obtain A itself.
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Other ML Algorithms

There are many ML algorithms on the market other than neural networks, though in HEP the
only other one commonly used (a lot in the past, less so now) is the BDT.

[xj > c2] [xj < c2] [xj > c3] [xj < c3]

0

B

B

xk>c4 xk<c4

P

Hopefully it’'s clear that a single DT is a weak classifier; however, by boosting—training a
series of DTs where the weights for misclassified events are increased as the series is trained,
a classic example is AdaBoost—or bagging—a large number of bootstrap-copy data
samples are produced, a separate DT is trained on each, and the final BDT response is the

majority vote of the DTIs—the final BDT can become powerful.
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Training & Loss

Typically in HEP, we use supervised learning. This means that the training data are labeled,
e.g. signal and background samples are provided where each event is labeled by its
category. Almost always this labeled data is simulated for signal. A mixture of simulation and
experimental data is used for backgrounds (problem dependent).

loss = F(prediction errors) (though not always)

oSS

Once you define a loss function, the goal of the training is to minimize the loss — which is
commonly done using gradient descent (as is done in fits you’ve run).

Mike Williams
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Overtraining

Even in a much more simple example—fitting 1-D data to a polynomial—if we give the fit
function too much complexity it will definitely overfit the data. This means that we expect the
model to describe unseen data worse than a more simple function.
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A neural network is an extremely complex function. How do we prevent overtraining given
that unconstrained minimization of so many parameters could easily overtrain®?
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Train, Validate, Test

The most common counter-attack to overtraining is to split the data into training, validation,
and testing samples. (If the sample is not large enough, one can k-fold it.) Checking the error
on validation data using cross validation is one way to spot obvious overtraining.

here is where we can tune
nhyper parameters and
compare algorithms

error on validation data

error

error on training data

training length (iterations, epochs, etc.)

Ultimately, we determine the performance in a data-driven way using calibration data
(independent of the training and validation). This gives an unbiased measurement of the
performance. (This is sufficient for usage, e.g., even if the algorithm is sub-optimal, provided
an unbiased performance determination exists, it can be used in an analysis.)
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Regularization

Outside of ML, you may be aware of regularization methods, e.g., the LASSO or Ridge, or
information criteria such as AIC or BIC. These methods can also be used to remove
unnecessary complexity from the ML model.
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Another simple form of regularization commonly used is dropout, where nodes are ignored at
random during the training.
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ML

»
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Usage??

What should the input features be? = e mf@
. N T @)= E I mses RS
e O(10-100M) hits? e .@m - o
N Z ylv’: L 'ﬁh", 353
e O(100) features for each of O(100) eSS A

: y
reconstructed particles?
e O(10) high-level physics features?

How do we ensure it’s doing something sensible?
What about systematics? |[...]
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ML as a Tool for Discovery

Let’s start by using physicist-designed high-level features input to shallow
algorithms, i.e. simply replace our usual cuts with better functions but largely
using the same features. \Where have we been using ML"?

53584
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( permanent storage J

Additionally, ML is now being used to gain actionable insights from computing metadata and
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Fake Tracks

Fake-track-kiling neural network based on 21 features, most important are hit
multiplicities and track-segment chi2 values from tracking subsystems. Significantly
reduces the rate of events selected in the first software-trigger stage.
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Performance evaluated using standard candle signals with and without applying a criterion
on the fake-tracking-filling NN.
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Higgs Discovery & Properties

ML played a key role in the discovery of the Higgs boson, especially in the diphoton analysis
by CMS where ML (used to improve the resolution and to select/categorize events) increased
the sensitivity by roughly the equivalent of collecting ~50% more data.
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High-

Precision Tests of the SM

Only about 1 in every 300 billion pp collisions produces the decay Bs—ppu within the LHCb
detector. LHCb uses BDT to suppress the overwhelming backgrounds to make the first
single-experiment observation of this decay.
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The observed decay rate agrees with the SM prediction within the archived precision of 25%.
To obtain the same sensitivity without the use of ML would’ve required about 4 x more data.
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—nergy Resolution

Using ML to improve the determination of particle properties is now commonplace in all LHC
experiments, e.q., BDTs are used to improve the resolution of the CMS calorimeter.
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Energy deposited is recorded by many sensors, which are clustered to recover the original
particle energy. BDTs are trained to learn corrections using all information available in the
various calorimeter sensors—which results in sizable improvement in resolution.
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Info from the tracking, calorimeter,
RICH, and muon systems all play an

important role here.

|
) ]

Case Study: Particle [dentification @ LHCDb

track originates from an e, y, 1, K,

Charged PID: determining whether a
o, or fake.

21
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Calorimeters
The primary use of the calorimeters for charged PID is in identifying electrons.
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Using electrons from photon conversions and hadrons from DO decays, € and h
PDFs are constructed from data vs track 3 momentum.

Mike Williams 22



Cherenkov Angle (rads)

RICH

The primary role of the RICHSs is charged-hadron ID (1, K, p).
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Calculate the likelihood of each RICH ring pattern observed under various PID
hypotheses, then use “DLL" to arbitrate (calibrate/validate using Ks—=mrt, A—prr,
and DO—Krt data samples).
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Muon System

Muons are identified by looking for hits in the muon system, which is shielded by
both the ECAL, HCAL, and whose stations are interleaved with iron absorbers.
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MislD from 11, K—=u in flight, shared hits with a real muon, punch through, etc.
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Combined DLLs

By combining the likelihoods from the RICHSs, calorimeter system, and the muon
system, LHCb obtains even better PID performance.
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Consider the common case of K—u decay in flight. If it was still a kaon when it
passed through the RICH, then the RICH likelihood will show this. E.g., CombDLL
reduces the B—~hh misID rate by a factor of 6 for a loss of only 3% of Bs—pp signal.
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Particle 1D

Use ML instead to identify particle types: LHCb uses NNs trained on 32 features from all
subsystems, each of which is trained to identify a specific particle type.
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Signal efficiency

Typically get ~3x less misID background per particle. Currently exploring more advanced
algorithms, which can reduce the BKGDs by another ~50%.
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Physics-Aware Loss

What about cases where we don’t just care about classification error on the training
samples? For example, what if we’re looking for a new particle whose mass and lifetime are
unknown? We cannot generate a MC sample for every mass and lifetime value, so how do

we do the search? (We don’t want to learn the m and t of the MC samples we train on.)
LHCb-PAPER-2015-036, LHCb-PAPER-2016-052
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We want to decorrelate the ML response from the features that we don’t know. (This is a
common problem. Even in 1-D, you want to avoid sculpting fake peaks at the mass values
used to generate your training samples. Plenty of SM use cases as well.)
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Physics-Aware Loss

In Rogozhnikova, Bukva, Gligorov, Ustyuzhanin, MW [1410.4140], we redefined the loss
function as loss = loss(classificaiton errors) + B loss(flatness), where the latter term is a
differentiable function that drives the learning to a result that is independent of some user-
chosen features.

 Generate MC samples at 15 points that roughly span the mass-lifetime plane that we want
to explore.

* Use 10 of these for training/validation, and hold back 5 for testing.

 Redefine the loss function to understand that we do not know the true mass and lifetime
value of the hidden-sector boson following [1410.4140].

e Find that the uniform BDT performs nearly identically on the 5 samples not used In training
as it does on the 10 in the training—and on these 5 samples it does much better than any
traditional algorithm tried (essentially, they all learn the masses of the training samples).

What if you don’t know how to define a loss function that achieves your goal? Why not just
have the machine learn it? (We’ll discuss this tomorrow.)

Mike Williams
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Deep Learning

Tomorrow, we’ll look at (at least partially) skipping the feature-engineering step.
How well can we do using deeper networks and/or special architectures?

53584
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6-12 August 2018
University of Oxford

Overview
Timetable

School information
.. Speakers
L. Social programme

. Application Process
~ and Important dates

.. Committees

. MLHEP participants
"~ feedback

Local information

L. Visa

. Venue

. Accommodation
L. About Oxford

L. Food and drinks
L. Getting to Oxford

Registration fee
Application Form

Frequently asked
questions

Competition

™ mlhep2018@yandex.ru

The Fourth Machine Learning summer school organised by Yandex School of Data
Analysis, Laboratory of Methods for Big Data Analysis of National Research University Higher School
of Economics and University of Oxford will be held in Oxford, UK from 6 to 12 August 2018.

The school will cover the relatively young area of data analysis and computational research that has
started to emerge in High Energy Physics (HEP). It is known by several names including “Multivariate
Analysis”, “Neural Networks”, “Classification/Clusterization techniques”. In more generic terms, these
techniques belong to the field of “Machine Learning”, which is an area that is based on research

performed in Statistics and has received a lot of attention from the Data Science community.

There are plenty of essential problems in high energy physics that can be solved using Machine
Learning methods. These vary from online data filtering and reconstruction to offline data analysis.

Students of the school will receive a theoretical and practical introduction to this new field and will be
able to apply acquired knowledge to solve their own problems. Topics ranging from decision trees to
deep learning and hyperparameter optimisation will be covered with concrete examples and hands-on
tutorials. A special data-science competition will be organised within the school to allow participants
to get better feeling of real-life ML applications scenarios.

Expected number of students for the school is 50-60 people. The school is aimed at PhD students
and postdoctoral researchers, but also open to masters students.

Pre-requisites for participation

e Python programming experience

(e.g. http://nbviewer.jupyter.org/gist/rpmuller/5920182, https://www.codecademy.com/tracks/python)

e interest and/or background in HEP
e laptop with WiFi connectivity

Upon completion of the school participants would be able to

e formulate a HEP-related problem in ML-friendly terms;
select quality criteria for a given problem;
understand and apply principles of widely-used classification models (e.g. boosting, bagging,
BDT, neural networks, etc) to practical cases;
optimise features and parameters of a given model in efficient way under given restrictions;
select the best classifier implementation amongst a variety of ML libraries (scikit-learn, xgboost,
deep learning libraries, etc);
understand and apply principles of generative model design;
define & conduct reproducible data-driven experiments.
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Data,Science @ LH Machine Learning for Jet Physics

_ 11-13 December 2017
(9:E1R3NNovember 2015 Lawrence Berkeley National Laboratory
US/Pacific timezone

Europe/Zurich timezone
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With the parallel progress in pattern recognition algorithms and microelectronic T

technology, the design and performance of tracking detector is rooted in the solid Lodging University of Washington Seattle
interplay of hardware and software : sensors, readout and trigger electronics, online and US/Pacic imezone

offline reconstruction software. The main focus of the workshop is on pattern recognition
Registration and machine learning algorithms devoted to the reconstruction of particle tracks or jets in Travel to Orsay v
high energy physics experiments, and the hardware developments that enable them.

Committees

This is a workshop on track reconstruction and other problems in pattern recognition in sparsely
Scientific Programme sampled data. The workshop is intended to be inclusive across other disciplines wherever similar
This 2017 edition is a merger of the Connecting The Dot series (see CTD2015 Berkeley, , Timetable problems arise. The main focus will be on pattern recognition and machine learning problems that
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P CTD2016 Vienna ) with the Workshop on Intelligent Tracker series (see WIT2010 Seattle tracking hackathon 9 P ) g o Py v

Berkeley, WIT2012 Pisa, WIT2014 Penn). TrackML hackathon This 2018 edition is the 4th of the Connecting The Dot series (see CTD2015 Berkeley, CTD2016
registration Vienna, WIT/CTD2017 LAL-Orsay)
The workshop will be plenary sessions only, with a mix of invited talks and accepted . Registration
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The workshop is plenary sessions only, with a mix of invited talks and accepted contributions. There
will also be a Poster session.

Registration are closed Contribution List
1e Learning and Videoconference Rooms

Wifi is available on site, eduroam credentials, from your institution or CERN, are recommended (but
not mandatory).
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Summary

¢ For the case where PDFs are known, there iIs no need for ML — but it’s rare to
truly be In that situation.

e [he use of ML has become ubiguitous in HERP. Many common classification
and regression tasks already performed by ML-based algorithms, including in
the real-time (trigger) event-classification systems.

¢ Physics-aware loss functions are a powerful way to use ML in situations
where out-of-the-box algorithms fail.

® Deep learning is starting to make an impact, first with HEP problems that are
closely related to those commonly solved using DL—but we're now moving
towards a producer phase (rather than just consumer) in HEP. I’ll focus on this
tomorrow.

e [f you're interesting in learning more about the details and/or software tools,
consider attending ML-HEP next year.



