
Mike Williams
MIT

August 29, 2018

Machine Learning in Particle Physics

Largely inspired by a Nature review article written in collaboration with A Radovic, D Rousseau,
M Kagan, D Bonacorsi, A Himmel, A Aurisano, K Terao, & T Wongjirad.

Who am I?

• I am an Associate Professor at MIT and I work on the LHCb experiment. Prior to joining the
faculty at MIT in 2012, I was a postdoc at Imperial College London 2008-2012, a grad
student at Carnegie Mellon, …

• I am NOT a dedicated ML specialist. I am a physicist. I write a lot of phenomenology,
LHCb, and technical papers.

• But I did write the primary LHCb b-physics trigger algorithm — and for the start of Run 1
this was already using an ML algorithm! (With a custom loss definition.) This algorithm,
including its Run 2 update, has collected the data used in ~300 papers to date.

• I also co-led (with Phil Ilten and Yandex colleagues) the proliferation of ML usage
throughout the LHCb trigger in Run 2. I have used ML in many LHCb publications, etc.

• I co-wrote the first (to my knowledge) HEP paper that presented a dedicated HEP-specific
loss function.

• I approach ML like everything else in physics: I try and understand the concepts, develop/
use intuition, etc. The main goal of these lectures is to focus on the core concepts of ML
and its usage in HEP. Alex has written an excellent tutorial to help you start to learn the
technicalities.

!2Mike Williams

The Short-Short Version

We use ML almost everywhere—to enable great science!

!3Mike Williams
Out of an abundance of laziness, I’ve reused a lot of slides from previous talks. The end result is

LHCb-heavy on examples. For the most part, all experiments are using ML in similar ways.

Overview
According to wikipedia: Machine learning is a field of computer science that
gives computers the ability to learn (i.e., progressively improve performance on
a specific task) with data, without being explicitly programmed.

It is, in fact, a very broad field of study—and one whose use in particle physics
is rapidly becoming ubiquitous.

Particle physics experiments produce some of the largest data sets in the
world: O(PB/s) → zero suppression → O(10 TB/s) → event filtering → O(GB/s)
permanent storage (multiply these by 10 for the HL-LHC era).

Let’s start with a common task in particle physics: classification. We classify
candidates (or events/reactions) as signal or background, we classify particles
according to their types (particle ID), etc.

Classification task are now routinely done using ML. How? Why?

!4Mike Williams

Classification
Consider two types of objects, (H0) background and (H1) signal, what is the optimal way to
select a region to study the signal?

Problem solved in 1933: Neyman & Pearson proved that optimal boundaries are given by
likelihood-ratio isobars; i.e. keep the regions with Λ(xn) > some constant.

rectangular cuts n-D manifold (some function of xn)

[images: G Cowan]

!5Mike Williams

The Problem

!6Mike Williams

Instead, we use simulation to produce many examples
of a signal event (but not a PDF). So, now what?

Unfortunately, we rarely (if ever) actually know the PDFs, which means that
we cannot construct the likelihood ratio.

PDF(xn,pm) = [physics](xn,pm)
⊗ [interaction with material]

⊗ [detector response]
⊗ [reconstruction]

One Solution

Physicists are good at feature engineering, many analyses boil 10M sensors down to a single
feature (e.g. the mass). However, if we need a PDF in more than ~2 dimensions, the curse of
dimensionality requires exponentially larger samples. Is there a better way?

In one dimension, we can use these examples to build a PDF, e.g. using a histogram, a
kernel, or assuming some parametric function and fitting it to the examples (perhaps we
leave some nuisance parameters free later).

!7Mike Williams

[1706.09936] [1701.05116]

Now, just choose a quantity to optimize, and use gradient descent to learn the weights, wm.
Ideally the result is F(Λ(xn)), though we don’t know F so can’t obtain Λ itself.

A Better Solution
Using examples of signal and background, we want to learn a function, F(xn), that provides
the same power as the likelihood ratio would — but without requiring that we know the PDFs
(clearly, any monotonic function of the form F(Λ(xn)) will do this).

}
N.b., this is just a very complicated
function of the form F(xn;wm)! The

deeper the network, the more complex
structures we can (easily) generate.

!8Mike Williams

Other ML Algorithms
There are many ML algorithms on the market other than neural networks, though in HEP the
only other one commonly used (a lot in the past, less so now) is the BDT.

Hopefully it’s clear that a single DT is a weak classifier; however, by boosting—training a
series of DTs where the weights for misclassified events are increased as the series is trained,
a classic example is AdaBoost—or bagging—a large number of bootstrap-copy data
samples are produced, a separate DT is trained on each, and the final BDT response is the
majority vote of the DTs—the final BDT can become powerful.

!9Mike Williams

Training & Loss
Typically in HEP, we use supervised learning. This means that the training data are labeled,
e.g. signal and background samples are provided where each event is labeled by its
category. Almost always this labeled data is simulated for signal. A mixture of simulation and
experimental data is used for backgrounds (problem dependent).

!10Mike Williams

Once you define a loss function, the goal of the training is to minimize the loss — which is
commonly done using gradient descent (as is done in fits you’ve run).

wi

wj

loss

loss = F(prediction errors) (though not always)

Overtraining
Even in a much more simple example—fitting 1-D data to a polynomial—if we give the fit
function too much complexity it will definitely overfit the data. This means that we expect the
model to describe unseen data worse than a more simple function.

!11Mike Williams

A neural network is an extremely complex function. How do we prevent overtraining given
that unconstrained minimization of so many parameters could easily overtrain?

Train, Validate, Test
The most common counter-attack to overtraining is to split the data into training, validation,
and testing samples. (If the sample is not large enough, one can k-fold it.) Checking the error
on validation data using cross validation is one way to spot obvious overtraining.

training length (iterations, epochs, etc.)

er
ro

r error on validation data

error on training data

!12Mike Williams

Ultimately, we determine the performance in a data-driven way using calibration data
(independent of the training and validation). This gives an unbiased measurement of the
performance. (This is sufficient for usage, e.g., even if the algorithm is sub-optimal, provided
an unbiased performance determination exists, it can be used in an analysis.)

here is where we can tune
hyper parameters and
compare algorithms

Regularization
Outside of ML, you may be aware of regularization methods, e.g., the LASSO or Ridge, or
information criteria such as AIC or BIC. These methods can also be used to remove
unnecessary complexity from the ML model.

!13Mike Williams

�2 ! �2 + �
X

|↵i|
<latexit sha1_base64="BKF5UiXyoGAsROiNDbox8Q1mKYg=">AAACFnicjVDLSsNAFJ3UV62vqEs3g0UQxJIUQZdFNy4r2Ac0MdxMJs3QyYOZiVDafoUbf8WNC0Xcijv/xmmbhYqCBy4czrn3ztzjZ5xJZVkfRmlhcWl5pbxaWVvf2Nwyt3faMs0FoS2S8lR0fZCUs4S2FFOcdjNBIfY57fiDi6nfuaVCsjS5VsOMujH0ExYyAkpLnnnskIjd1LGjUlzQI+xwvSAA7Mg8xmPsAM8i8NgYe2bVrlkz4L9JFRVoeua7E6Qkj2miCAcpe7aVKXcEQjHC6aTi5JJmQAbQpz1NE4ipdEezsyb4QCsBDlOhK1F4pn6dGEEs5TD2dWcMKpI/van4m9fLVXjmjliS5YomZP5QmHOsM5hmhAMmKFF8qAkQwfRfMYlAAFE6ycr/QmjXa7ZVs69Oqo3zIo4y2kP76BDZ6BQ10CVqohYi6A49oCf0bNwbj8aL8TpvLRnFzC76BuPtE2zZnao=</latexit><latexit sha1_base64="BKF5UiXyoGAsROiNDbox8Q1mKYg=">AAACFnicjVDLSsNAFJ3UV62vqEs3g0UQxJIUQZdFNy4r2Ac0MdxMJs3QyYOZiVDafoUbf8WNC0Xcijv/xmmbhYqCBy4czrn3ztzjZ5xJZVkfRmlhcWl5pbxaWVvf2Nwyt3faMs0FoS2S8lR0fZCUs4S2FFOcdjNBIfY57fiDi6nfuaVCsjS5VsOMujH0ExYyAkpLnnnskIjd1LGjUlzQI+xwvSAA7Mg8xmPsAM8i8NgYe2bVrlkz4L9JFRVoeua7E6Qkj2miCAcpe7aVKXcEQjHC6aTi5JJmQAbQpz1NE4ipdEezsyb4QCsBDlOhK1F4pn6dGEEs5TD2dWcMKpI/van4m9fLVXjmjliS5YomZP5QmHOsM5hmhAMmKFF8qAkQwfRfMYlAAFE6ycr/QmjXa7ZVs69Oqo3zIo4y2kP76BDZ6BQ10CVqohYi6A49oCf0bNwbj8aL8TpvLRnFzC76BuPtE2zZnao=</latexit><latexit sha1_base64="BKF5UiXyoGAsROiNDbox8Q1mKYg=">AAACFnicjVDLSsNAFJ3UV62vqEs3g0UQxJIUQZdFNy4r2Ac0MdxMJs3QyYOZiVDafoUbf8WNC0Xcijv/xmmbhYqCBy4czrn3ztzjZ5xJZVkfRmlhcWl5pbxaWVvf2Nwyt3faMs0FoS2S8lR0fZCUs4S2FFOcdjNBIfY57fiDi6nfuaVCsjS5VsOMujH0ExYyAkpLnnnskIjd1LGjUlzQI+xwvSAA7Mg8xmPsAM8i8NgYe2bVrlkz4L9JFRVoeua7E6Qkj2miCAcpe7aVKXcEQjHC6aTi5JJmQAbQpz1NE4ipdEezsyb4QCsBDlOhK1F4pn6dGEEs5TD2dWcMKpI/van4m9fLVXjmjliS5YomZP5QmHOsM5hmhAMmKFF8qAkQwfRfMYlAAFE6ycr/QmjXa7ZVs69Oqo3zIo4y2kP76BDZ6BQ10CVqohYi6A49oCf0bNwbj8aL8TpvLRnFzC76BuPtE2zZnao=</latexit><latexit sha1_base64="BKF5UiXyoGAsROiNDbox8Q1mKYg=">AAACFnicjVDLSsNAFJ3UV62vqEs3g0UQxJIUQZdFNy4r2Ac0MdxMJs3QyYOZiVDafoUbf8WNC0Xcijv/xmmbhYqCBy4czrn3ztzjZ5xJZVkfRmlhcWl5pbxaWVvf2Nwyt3faMs0FoS2S8lR0fZCUs4S2FFOcdjNBIfY57fiDi6nfuaVCsjS5VsOMujH0ExYyAkpLnnnskIjd1LGjUlzQI+xwvSAA7Mg8xmPsAM8i8NgYe2bVrlkz4L9JFRVoeua7E6Qkj2miCAcpe7aVKXcEQjHC6aTi5JJmQAbQpz1NE4ipdEezsyb4QCsBDlOhK1F4pn6dGEEs5TD2dWcMKpI/van4m9fLVXjmjliS5YomZP5QmHOsM5hmhAMmKFF8qAkQwfRfMYlAAFE6ycr/QmjXa7ZVs69Oqo3zIo4y2kP76BDZ6BQ10CVqohYi6A49oCf0bNwbj8aL8TpvLRnFzC76BuPtE2zZnao=</latexit>

Another simple form of regularization commonly used is dropout, where nodes are ignored at
random during the training.

}

ML Usage?

• O(10-100M) hits?
• O(100) features for each of O(100)

reconstructed particles?
• O(10) high-level physics features?

What should the input features be?

How do we ensure it’s doing something sensible?
What about systematics? […]

!14Mike Williams

ML as a Tool for Discovery

Let’s start by using physicist-designed high-level features input to shallow
algorithms, i.e. simply replace our usual cuts with better functions but largely
using the same features. Where have we been using ML?

!15Mike Williams

!16Mike Williams

Additionally, ML is now being used to gain actionable insights from computing metadata and
used to increase the efficiency of our computing resource usage.

Big Data & Real-Time Analysis

 1 TB/s
post zero

suppression

Heavy use of machine learning:
V.Gligorov, MW, JINST 8 (2012) P02013

T.Likhomanenko et al [1510.00572]

partial event
reconstruction on 50k

CPU cores
(ML-based filtering)

 5 TB/s (Run 3)
post zero

suppression

simple feature-
building/selection

on FPGAs

permanent storage

full event
reconstruction

(ML-based filtering)

0.7 GB/s
3 GB/s

data buffered on
O(10 PB) disk

real-time alignment
 & calibration

6 GB/s
30 GB/s

50 GB/s

Fake Tracks

!17Mike Williams

Performance evaluated using standard candle signals with and without applying a criterion
on the fake-tracking-filling NN.

Fake-track-killing neural network based on 21 features, most important are hit
multiplicities and track-segment chi2 values from tracking subsystems. Significantly
reduces the rate of events selected in the first software-trigger stage.

LHCb-PUB-2017-011

Higgs Discovery & Properties
ML played a key role in the discovery of the Higgs boson, especially in the diphoton analysis
by CMS where ML (used to improve the resolution and to select/categorize events) increased
the sensitivity by roughly the equivalent of collecting ~50% more data.

!18Mike Williams

Measuring Higgs Properties

Example ML usage for the Higgs
[1501.04943]

The study of tau leptons is complicated
by the fact that they decay before they
can be detected and by the loss of the

subsequently produced neutrinos.

The ATLAS data sample was divided
into 6 distinct kinematic regions, and in

each a BDT was trained using 12
weakly discriminating features

(improved sensitivity by ~40% vs a
non-ML approach.)

High-Precision Tests of the SM
Only about 1 in every 300 billion pp collisions produces the decay Bs→µµ within the LHCb
detector. LHCb uses BDT to suppress the overwhelming backgrounds to make the first
single-experiment observation of this decay.

!19Mike Williams

The observed decay rate agrees with the SM prediction within the archived precision of 25%.
To obtain the same sensitivity without the use of ML would’ve required about 4 x more data.

[1703.05747]

Energy Resolution
Using ML to improve the determination of particle properties is now commonplace in all LHC
experiments, e.g., BDTs are used to improve the resolution of the CMS calorimeter.

!20Mike Williams

Energy deposited is recorded by many sensors, which are clustered to recover the original
particle energy. BDTs are trained to learn corrections using all information available in the
various calorimeter sensors—which results in sizable improvement in resolution.

Case Study: Particle Identification @ LHCb

!21Mike Williams

Charged PID: determining whether a
track originates from an e, μ, π, K,
p, or fake.

Info from the tracking, calorimeter,
RICH, and muon systems all play an
important role here.

Calorimeters

!22Mike Williams

The primary use of the calorimeters for charged PID is in identifying electrons.

Using electrons from photon conversions and hadrons from D0 decays, e and h
PDFs are constructed from data vs track 3 momentum.

RICH

!23Mike Williams

The primary role of the RICHs is charged-hadron ID (π, K, p).

Calculate the likelihood of each RICH ring pattern observed under various PID
hypotheses, then use “DLL” to arbitrate (calibrate/validate using KS→ππ, Λ→pπ,
and D0→Kπ data samples).

Muon System

!24Mike Williams

Muons are identified by looking for hits in the muon system, which is shielded by
both the ECAL, HCAL, and whose stations are interleaved with iron absorbers.

MisID from π, K→μ in flight, shared hits with a real muon, punch through, etc.

Combined DLLs

!25Mike Williams

By combining the likelihoods from the RICHs, calorimeter system, and the muon
system, LHCb obtains even better PID performance.

Consider the common case of K→μ decay in flight. If it was still a kaon when it
passed through the RICH, then the RICH likelihood will show this. E.g., CombDLL
reduces the B→hh misID rate by a factor of 6 for a loss of only 3% of Bs→μμ signal.

Particle ID
Use ML instead to identify particle types: LHCb uses NNs trained on 32 features from all
subsystems, each of which is trained to identify a specific particle type.

!26Mike Williams

Typically get ~3x less misID background per particle. Currently exploring more advanced
algorithms, which can reduce the BKGDs by another ~50%.

better

Calibration samples from
standard candles are used

to characterize the
performance of the NNs

(only assumption is
factorization).

Physics-Aware Loss

!27Mike Williams

What about cases where we don’t just care about classification error on the training
samples? For example, what if we’re looking for a new particle whose mass and lifetime are
unknown? We cannot generate a MC sample for every mass and lifetime value, so how do
we do the search? (We don’t want to learn the m and 𝛕 of the MC samples we train on.)

LHCb Higgs-portal search
covers a factor of 20 in
mass, and 4 orders of
magnitude in lifetime.

We want to decorrelate the ML response from the features that we don’t know. (This is a
common problem. Even in 1-D, you want to avoid sculpting fake peaks at the mass values
used to generate your training samples. Plenty of SM use cases as well.)

LHCb-PAPER-2015-036, LHCb-PAPER-2016-052

Physics-Aware Loss

• Generate MC samples at 15 points that roughly span the mass-lifetime plane that we want
to explore.

• Use 10 of these for training/validation, and hold back 5 for testing.

• Redefine the loss function to understand that we do not know the true mass and lifetime
value of the hidden-sector boson following [1410.4140].

• Find that the uniform BDT performs nearly identically on the 5 samples not used in training
as it does on the 10 in the training—and on these 5 samples it does much better than any
traditional algorithm tried (essentially, they all learn the masses of the training samples).

!28Mike Williams

In Rogozhnikova, Bukva, Gligorov, Ustyuzhanin, MW [1410.4140], we redefined the loss
function as loss = loss(classificaiton errors) + β loss(flatness), where the latter term is a
differentiable function that drives the learning to a result that is independent of some user-
chosen features.

What if you don’t know how to define a loss function that achieves your goal? Why not just
have the machine learn it? (We’ll discuss this tomorrow.)

Deep Learning

Tomorrow, we’ll look at (at least partially) skipping the feature-engineering step.
How well can we do using deeper networks and/or special architectures?

!29Mike Williams

!30Mike Williams

slide stolen from
K Cranmer

Summary

• For the case where PDFs are known, there is no need for ML — but it’s rare to
truly be in that situation.

• The use of ML has become ubiquitous in HEP. Many common classification
and regression tasks already performed by ML-based algorithms, including in
the real-time (trigger) event-classification systems.

• Physics-aware loss functions are a powerful way to use ML in situations
where out-of-the-box algorithms fail.

• Deep learning is starting to make an impact, first with HEP problems that are
closely related to those commonly solved using DL—but we’re now moving
towards a producer phase (rather than just consumer) in HEP. I’ll focus on this
tomorrow.

• If you’re interesting in learning more about the details and/or software tools,
consider attending ML-HEP next year.

