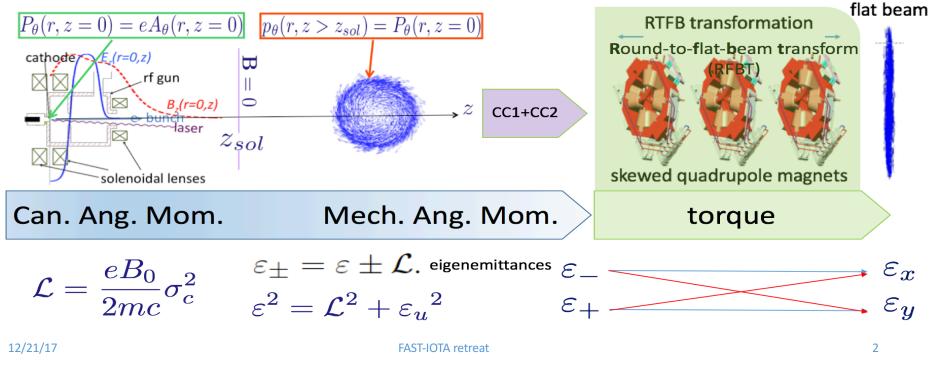


Summary of flat-beam studies at FAST during FALL17 run

A. Halavanau*, work by all the FAST team.

Presented by P. Piot

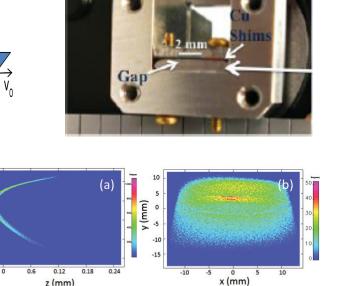
Fermilab FAST/IOTA retreat 12/21/2017

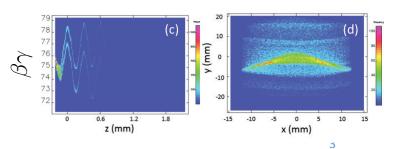

12/21/17

• Flat process:

1. Magnetized beam

Introduction


2. Torque from skew quadrupole channel



4J(P. t) d'r' dt

Why flat beams?

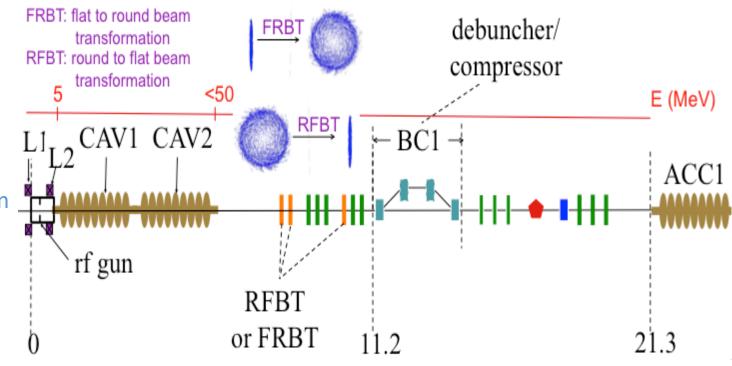
- Physics of flat beam:
 - Transfer of eigen-emittances to conventional emittances
 - Compression of flat beams
 - Flatness limit (linear colliders)
 - Application as a phase-space diagnostics
- Applications:
 - Beam manipulation/acceleration in asymmetric structures (prop. w. radiabeam)
 - Micro-undulator (U. Florida), Smith Purcell...
 - Beam-beam kicker (idea by V. Shiltsev)
 - Intermediary stage for transport of magnetized beam (e-cooling at JLEIC)

FAST-IOTA retreat

surface charge

density

h.

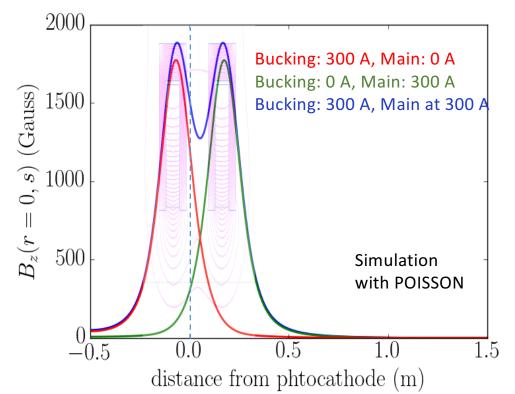

> V≈C

 $\beta\gamma$

74

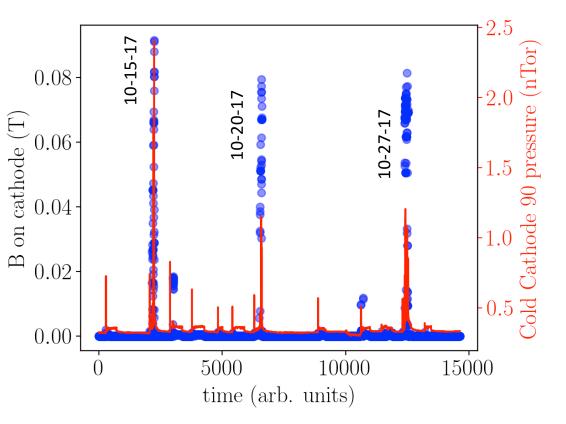
Hardware + Setup

- Axial B field on photocathode
- Skew quads:
 - Q106, Q107, Q111 skewed
- Diagnostics:
 - Slits at X107 (incoming beam parameters) + magnetization
 - Slits at X118 would make experiment easier


Anticipated improvements over past experiments

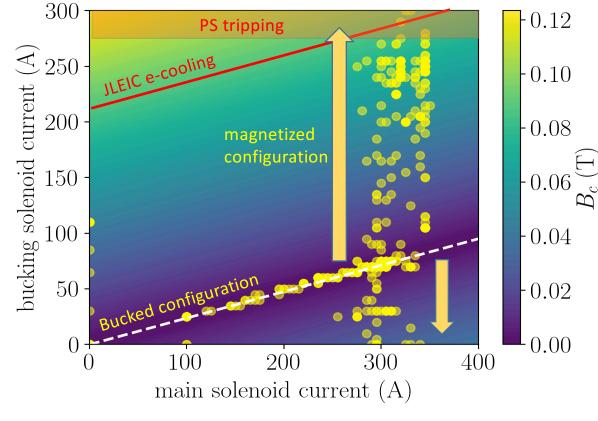
• At AOPI experiment was limited:

- B-field on cath. <900 G
- RFBT transformation at 15 MeV (SC + aberration limited the achievable emittance ratio)


• At FAST

- B-field on cath. >~1200 G
- RFBT transformation at >~40 MeV
- Manipulation after RFBT:
 - Compression of flat beam
 - Acceleration in a cryomodule
 - "Re-magnetization"

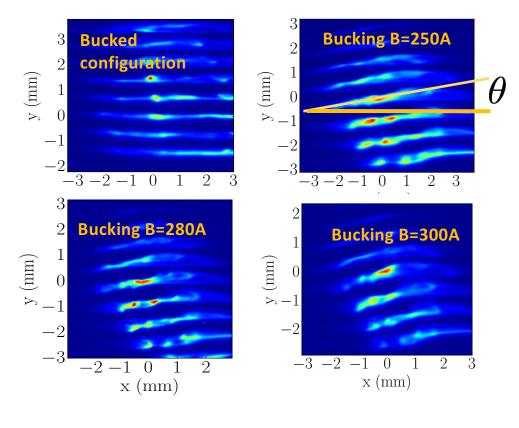
Solenoid field on cathode (I)


- Changing the B field leads to vacuum activity
- But this was seemingly conditioned by gradually increasing the field over a few shifts
- We were not able to go over 300 A due to other issue

12/21/17

Solenoid field on cathode (II)

 Ultimately, the limitation that prevented higher field came from the bucking-solenoid power supply (to my knowledge the root cause has not been investigated)

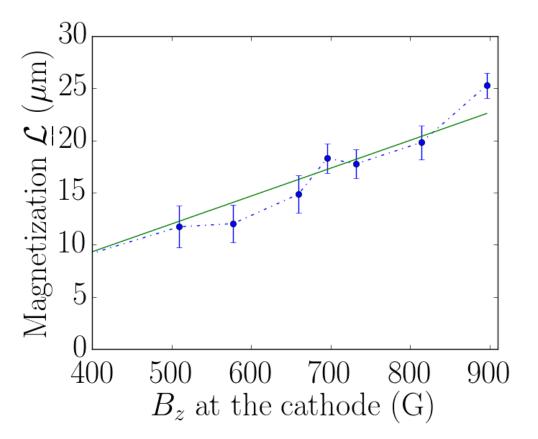

Magnetization (I)

 The beam magnetization was measured using X107 slits + X111 viewer

$$\mathcal{L} = 2 \frac{p_z}{mc} \frac{\sigma_{107} \sigma_{111} \sin \theta}{D}$$

• Later we used the improved setup with X107 CCD

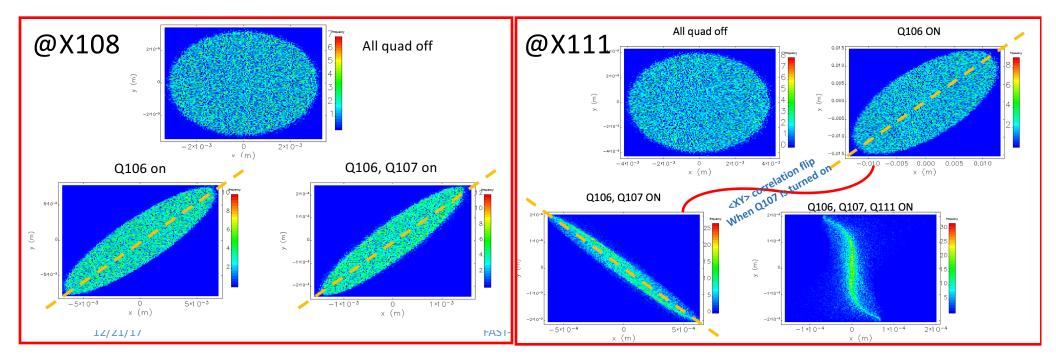
Bucking current, A	Rotation angle, (deg)	<l>, μm</l>
250A	8	18.3
280A	14	19.8
300A	17	25.3
42/24/47		


12/21/17

Magnetization (II)

• Magnetization:

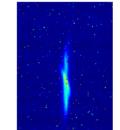
 $\underline{\mathcal{L}} = \frac{eB\sigma_c^2}{mc}$ Laser spot size


- Linear scaling vs applied field on cathode is observed
- Due to bucking-solenoid over heating, maximum of 260A was used, magnetization around 20 um
- A different (quad scan method was also used but analysis not yet finalized)

12/21/17

Decorrelation with skew quadrupoles

- Given the CAM-dominated beam a set of skew quadrupole magnet can be used to apply a torque
- In the process the CAM is removed and beam becomes asymmetric



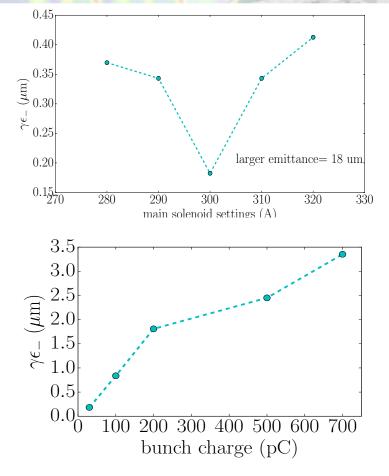
On-line optimization of skew quadrupole

- Because of lack of understanding of our initial condition and time constrains simulations settings were not producing a flat beam
- Used the pyACNET high-level software (python) combined with python-based optimization to optimize skew quad settings
- Procedure:
 - let the optimizer make a flat beam at X111 and check iterate with X120 back and forth
 - Could be improved by directly using X118 slits eventually

Dialing settings from Simulations (at the time no idea of the laser distribution)

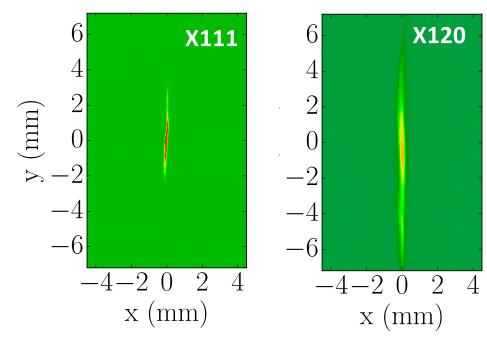


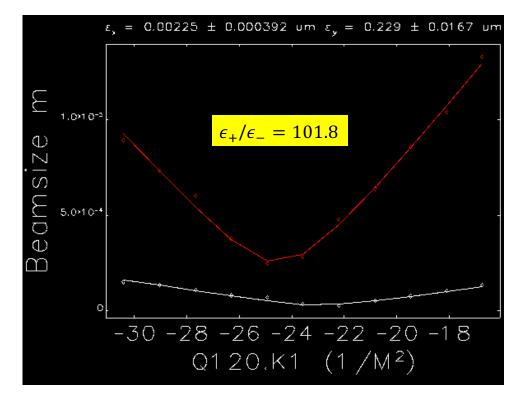
X111


X120

Letting the PYTHON optimizer work (with help from a skilled operator...)

Flat-beam parametric scans

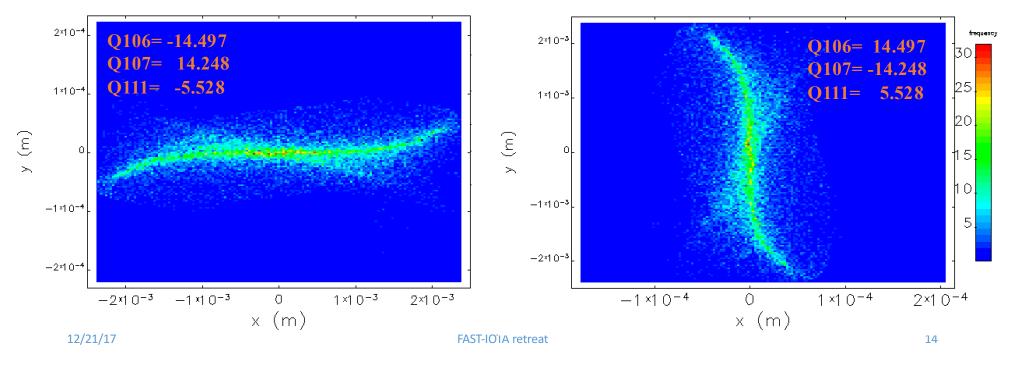

- For a given magnetization we expect emittance to be minimized for a give range of main-solenoid settings
 - Qualitatively observed
 - Will be compared with simulation
- Flat-beam emittance as function of charge:
 - As bunch charge increases the smalleremittance value significantly increase
- Flat beam as a function of cavity phase (chromatic aberration in skew quadrupole)



12/21/17

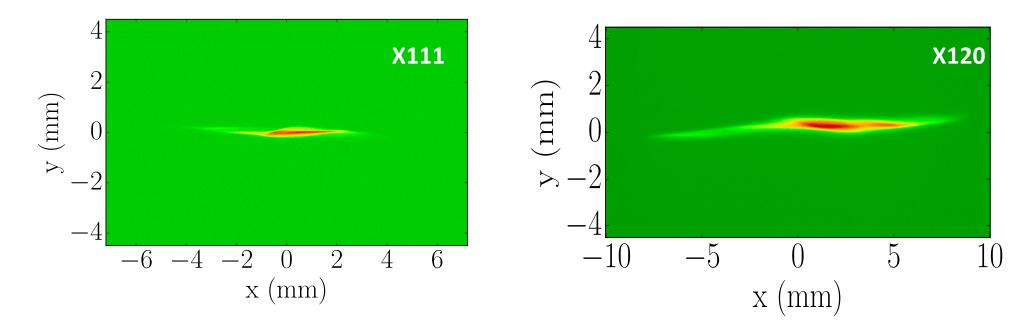
Best emittance ratio of ~100

- Archived for a vertical flat beam
- 30-pC bunch charge



12/21/17

retreat


Horizontal or Vertical flat beams?

- For a given magnetization both type possible (quad polarity switch)
- Horizontal flat beams mitigate (in theory) 4D emittance growth in chicane during compression.

Horizontal flat beams also produced

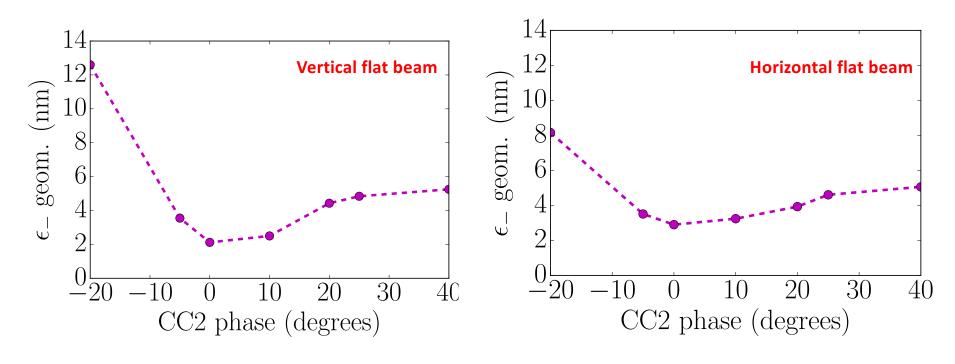
- Flat horizontal beam were also produced
- Beam quality was not has good as vertical flat beam

Summary table (from Aleksei)

Charge	$\epsilon_{_{\chi}}$, um (norm.)	ϵ_y , um (norm.)	Notes		
250 pC	0.77	1.28	Iris 10%		
250 pC	0.4	0.37	Sasha R. values		
30 pc	3.4	9.0	Iris 100%		

Round heam

Flat beam

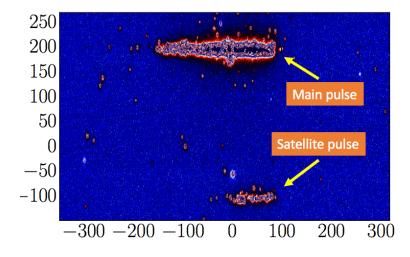

Charge	ϵ_+ , um (norm.)	ϵ , um (norm.)	Notes
30 pC	14.66	0.144	Iris 100%, B=260A, VFB
30 pC	12.8	0.15	Iris 100%, B=260A, HFB
30 pC	19.2	0.32	Iris 100%, B=260A, VFB
30 pC	9.4	0.21	Iris 100%, B=260A, HFB

- best values, difficult to reproduce
- average values, easy to reproduce

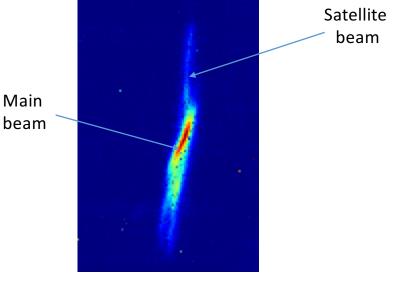
12/21/17

Flat-beam compression

• Observation consistent (but need quantitative analysis) with expectations



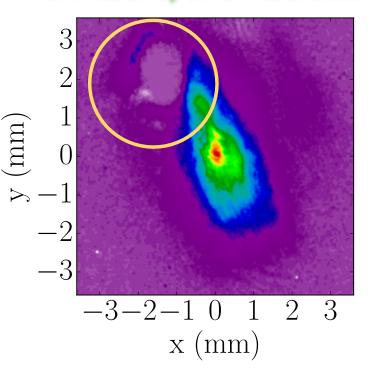
12/21/17


Double-beam?

• On several diagnostics

- Slit images
- Beam spot on screen
- We observed a double beam

Bunch time profile (uncalibrated)


- Confirmed by streak camera
- Not yet sure how to process account for this anomaly (% emit?)

12/21/17

Next Step (near term -- analysis)

- Re-Analyze all the data using different analysis [all the data (esp. emittance) are analyzed with an on-line software with limited capabilities (need to be fast)]
- Most likely will address the double population beam by quoting percentile emittance
- The fact we started with a coupled asymmetric laser spot and generated a flat beam is very interesting (and made us realize of a possible generalization of the flat-beam generation theory)

UV laser spot on cathode

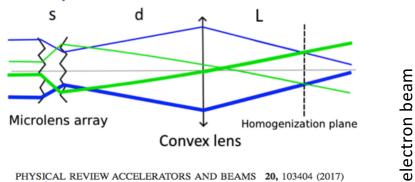
Future plans (longer term)

- I compatible with nominal operation I would suggest we keep the skew quad setup for one more round of run
- I (PP) view this experiment as a stepping stone:
 - a good teaser but we need to iron issues especially with controlling the laser-beam distribution.
 - Quad scan works well but too slow (X118 would be very useful eventually)
 - I still hope we have a path to achieve higher flat-beam emittances than achieved during this running period. Higher charge and compression have important applications and could interest others
- Collaboration with JLab:
 - JLab/JLEIC staff were interested in participating in some aspects of our experiment but we never followed up as we felt this was not ready for prime time.
 - The parameter we have reached are very close to the nominal e- cooling parameters (now joining force on a DOE-NP proposal).

FAST and JLEIC electron cooling (DOE-NP proposal in preparation)

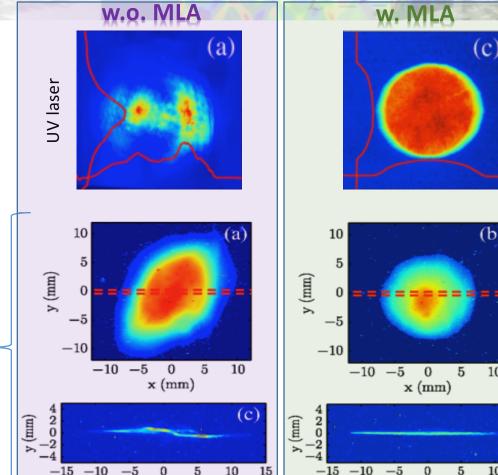
Weak Cooler Specifications (Electrons)

- Energy 20–55 MeV ¹ Up to 47 MeV
- Charge 420 pC achieved
- Linac frequency 952.6 MHz
- Bunch length (tophat) 2 cm (23°)
- Thermal emittance <19 mm-mrad ²
- Cathode spot radius 2.2 mm 0.5 but tunable
- Cathode field 0.1 T ³ 0.09 demonstrated
- Gun voltage 400 kV 20 but with 0.5 mm
- Normalized hor. drift emittance 36 mm-mrad
- rms Energy spread (uncorr.)* 3x10⁻⁴
- Energy spread (p-p corr.)* <6x10⁻⁴


Strong Cooler Specifications (Electrons)

- Energy <u>20-55 MeV 1</u>
- Charge 2.0 nC
- CCR puise frequency 476.3 MHz
- Gun frequency 23.82 MHz
- Bunch length (tophat) 2 cm (23°)
- Thermal emittance <19 mm-mrad ²
- Cathode spot radius 2.2 mm
- Cathode field 0.1 T^{-3}
- Gun voltage 400 kV
- Normalized hor. drift emittance 36 mm-mrad

Note on laser homogenization


FAST

- We should **re**consider installing an MLA-based homogenizer
- Robust and maintenance-free
- ANL/AWA now routinely operates with one

Spatial control of photoemitted electron beams using a microlens-array transverse-shaping technique

A. Halavanau,^{1,2} G. Qiang,^{3,4} G. Ha,⁵ E. Wisniewski,³ P. Piot,^{1,2} J. G. Power,³ and W. Gai³ 12/21/17

x (mm)

b

10

10

x (mm)

(d)

15

Final words

- Overall I think it is amazing we pulled a decent experiment in such a short time using a not fully understood/commissioned accelerator
- Key elements:
 - VERY good support/people
 - ability to develop on-the-fly applications (e.g. flat-beam optimizer)
 - Very stable/reproducible accelerator settings
- The flat beam did not provide the expected results in term of achieved beam quality but several finding/results are very interesting and will provide impetus for some theoretical/numerical studies
 - This will be what Aleksei has to do in the final stretch of his dissertation work
 - These studies, supported by our experiments, will be of interest to the community

Thank you to all for the support!

12/21/17