Accelerator and Beamline Research and Technology Development for High-Power Neutrino Beams

Continuing collaboration (consortium) on accelerator & beamline R&D in support of high-power neutrino beams.

Principal Investigators:

KEK/J-PARC: Nakadaira

Fermilab: Zwaska, Seiya, Papadimitriou

Colorado: Marino, Zimmerman

Supported at \$135k in previous call

[425 hrs + 22k travel + 24k M&S]

Requesting \$465k in this call

[1100 hrs + 45k travel + 57k CU + 122k M&S]

Colorado university now treated as subcontractor on Fermilab proposal.

Areas of research interest:

- Gated ionization profile monitor
- Laser manipulation of H- beams
- Beam dynamics studies for beam loss reduction
- Extracted beam monitoring
- High-power target facility issues

Activities from previous proposal started in October:

- Travel between Fermilab & J-PARC of research groups
- Development of hardware for device testing
- Workshops for exchange of knowledge on megawatt-class beams

Accelerator and Beamline Research and Technology Development for High-Power Neutrino Beams

Gated ionization profile monitor

IPM is beam instrumentation which measures beam width. Research into gating would allow much longer lifetime in accelerator, and thus greater ability.

Laser manipulation of H- beams

Stripping of beam in linac and at injection. Can make flexible beam patterns and eliminate a dominant losss source. Also explore other options for beam shaping and instrumentation

Beam dynamics studies for beam loss reduction

New approaches to synchrotron lattice optimization and measurements to decrease high-intensity beam loss.

Extracted beam monitoring

Development of technology to allow spill-to-spill beam profile measurements in extraction lines, and allow long lifetime of the devices an minimal radioactivation. Presently work on low-mass multiwire SEMs and OTR foils. Interest in gaseous devices.

High-power target facility issues

High-interest in radiation-resistant materials to seal the gas volumes around the beamlines. Feedthroughs for utilities are a weak point; need to developed sealed and cooled stripline for horn current conductors. Also will develop techniques to gracefully recombine radiolyzed hydrogen and water within the horn water spray volumes