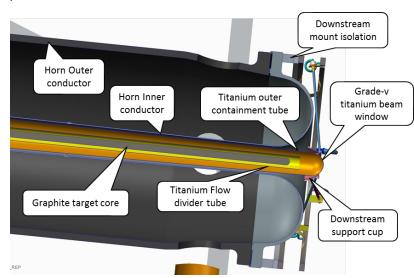


Advanced Material Studies for High Intensity Proton Production Targets and Windows

Patrick Hurh (Lead US PI) / Taku Ishida (Lead JP PI) 2018 Proposal Summary for the U.S.-Japan Science and Technology Cooperation Program in High Energy Physics Dec 11 2017



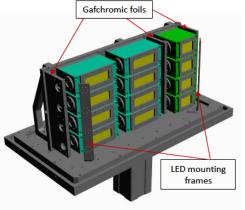
Principal Objectives

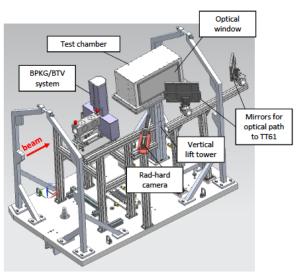
- Obtain mechanical property and fatigue data on a variety of Ti alloys after high energy proton irradiation to enable target and beam window lifetime prediction and design and analysis of robust future targets and beam windows
- Improve the fundamental understanding of the contributions of microstructure on irradiation performance of Ti alloys (will inform future Ti alloy development for materials intended for accelerator or nuclear service)
- Observe the mechanical integrity of the SiC coating after subjecting them to high energy proton irradiation (will be useful for possible application of SiC as a protective oxidation shield for graphite targets and components)

- T2K currently uses Ti alloy beam windows
- LBNF plans to use Ti alloy target vessel and beam windows
- Graphite is used for targets at both facilities with oxidation being a potential limit on lifetime

Activities Supported & Outcomes/Impacts

- Inclusion of Ti alloys & SiC coated graphite in RaDIATE irradiation run at BLIP
- Post-Irradiation Examination (PIE) at PNNL and Fermilab
 - PNNL: Tensile properties, micro-structural characterization
 - Fermilab: Fatigue testing (world's first HE proton irradiated Ti high-cycle fatigue study)
- Inclusion of Ti alloys in an in-beam thermal shock experiment at CERN's HiRadMat beamline
- Design of ion beam irradiation experiment on Ti alloys (2019)
- Outcomes:
 - Estimation and extension of the useful lifetime of beam windows in use in the T2K beamline, reducing risks and operational costs of in-service failure
 - Enables more informed design and lifetime estimation of the LBNF beamline target vessel and beam windows, reducing risks and costs
 - Oxidation prevention coating (SiC) for graphite neutrino and muon targets
- Impacts:
 - Improved Ti alloys and proper selection of operating parameters for optimal lifetime of HPT beamline beam windows
 - Development of radiation damage and thermal shock resistant materials for use in next generation HPT facilities to enable stable multi-MW operations




Progress in current year

- BNL Linac failure and recovery interrupted the planned irradiation period
 - Ti alloy and SiC-graphite specimens prepared, installed and irradiated for 3.5 weeks (out of 8 weeks)
 - Irradiation will resume (5 weeks) in mid-January
 - Removed 1 Ti capsule from beam-line and will ship to PNNL to begin PIE
 - Preparing/installing replacement Ti capsule, broadening scope of alloys evaluated
- Design of HiRadMat experiment rig underway (50% complete)
- Fatigue Testing Machine (FTM) built and commissioned
 - Beginning to characterize non-irradiated control specimens now
- Capsule opening machine being developed at PNNL

Budget

Name	Institution	FY 2018 Request	FY 2019 Anticipated	FY 2020 Anticipated	FY 2021 Anticipated
PG Hurh	Fermi National Accelerator	\$210,000	\$245,000	\$239,000	\$248,000
	Laboratory				
D Senor	Pacific Northwest National Laboratory	\$209,998	\$214,000	\$207,000	\$181,000
	US DOE Totals	\$420,000	\$459,000	\$446,000	\$429,000

Budget Request to KEK (in kJPY)

Equipment and Supplies Costs	38,763	42,942	43,530	45,884
Travel	3,339	3,294	2,824	3,294

Last year, awarded \$364,000 (DOE) and \$136,000 (KEK)

