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Light-like is a NO-GO

Hadronic Tensor Methods

“Light-like” separated Hadronic Tensor K. F. Liu et al Phys.Rev.Lett. 72 (1994), A. J. Chambers et al

Phys.Rev.Lett. 118 (2017)

Ioffe Time Pseudo Distribution Methods

quasi-PDFs (X. Ji Phys.Rev.Lett. 110, (2013))

pseudo-PDFs (A. Radyushkin Phys.Lett. B767 (2017))

Similarly to a global QCD analysis of high energy scattering data, PDFs can

also be extracted from analyzing data generated by lattice-QCD calculation

of good lattice cross-sections Y.-Q. Ma and J.-W. Qiu Phys. Rev. Lett. 120 (2018)
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Formalism

Computing PDFs in LQCD we start from the equal time hadronic matrix

element with the quark and anti-quark fields separated by a finite distance.

For non-singlet parton densities the matrix element

Mα(z, p) ≡ 〈p|ψ̄(0) γα Ê(0, z;A)τ3ψ(z)|p〉

where Ê(0, z;A) is the 0→ z straight-line gauge link in the fundamental

representation, τ3 is the flavor Pauli matrix, and γa is a gamma matrix. We

can decompose the matrix element due to Lorentz invariance as

Mα(z, p) =2pαMp(−(zp),−z2) + zαMz(−(zp),−z2)
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Formalism

From the Mp(−(zp),−z2) part the twist-2 contribution to PDFs can be

obtained in the limit z2 → 0.

By taking z = (0, 0, 0, z3), α in the temporal direction i.e. α = 0, and the

hadron momentum p = (p0, 0, 0, p) the zα-part drops out.

The Lorentz invariant quantity ν = −(zp), is the ”Ioffe time” (B. L. Ioffe, Phys. Lett.

30B, 123 (1969)) and

〈p|ψ̄(0) γ0 Ê(0, z;A)τ3ψ(z)|p〉 = 2p0Mp(ν, z
2
3)
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Formalism

The quasi-PDF Q(x, p2) is related to Mp(ν, z
2
3) by

Q(x, p2) =
1

2π

∫ ∞

−∞
dν e−ixνMp(ν, [ν/p]

2)

Quasi PDF mixes invariant scales until pz is effectively large enough

While the pseudo-PDF has fixed invariant scale dependence

P (x, z20) =
1

2π

∫ ∞

−∞
dν e−ixνMp(ν, z

2
0)

ν

z23

p3 →∞

−z2
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Formalism

Ioffe time PDFs M(ν, z23) defined at a scale µ2 = 4e−2γE/z23 (at leading log

level) are the Fourier transform of regular PDFs f(x, µ2). (I.I. Balitsky and V.M. Braun, Nucl.

Phys. B311, 541 (1988), V. Braun, et. al Phys. Rev. D 51, 6036 (1995)), A. Radyushkin Phys.Rev. D98 (2018) no.1, 014019

M(ν, z23) =

∫ 1

−1
dx f(x, 1/z23)eixν

Scale dependence of the Ioffe time PDF derived from the DGLAP evolution

of the regular PDFs.

Ioffe time PDFs evolution equation

d

d ln z23
M(ν, z23) = −αs

2π
CF

∫ 1

0

duB(u)M(uν, z23)

with B(u) =
[
1+u2

1−u

]
+

, CF = 4/3, and B(u) is the LO evolution kernel for

the non-singlet quark PDF (V. Braun, et. al Phys. Rev. D 51, 6036 (1995))
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Obtaining the Ioffe time PDF

z3 → 0⇒Mp(ν, z
2
3) =M(ν, z23) +O(z23)

But.... large O(z23) corrections prohibit the extraction.

Conservation of the vector current implies Mp(0, z
2
3) = 1 +O(z23) ,

but in a ratio z23 corrections (related to the transverse structure of the

hadron) might cancel (A. Radyushkin Phys.Lett. B767 (2017))

M(ν, z23) ≡ Mp(ν, z
2
3)

Mp(0, z23)

Much smaller O(z23) corrections and therefore this ratio could be used to

extract the Ioffe time PDFs

A well defined continuum limit and does not require renormalization
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Matching to MS

In Phys.Rev. D98 (2018) no.1, 014019 it was shown by Radyushkin that at 1-loop evolution

and matching to MS can be done simultaneously.

This establishes a direct relation between the Ioffe time distribution

function (ITDF) and pseudo-ITDF.

Scales are needed as such that we are in a regime dominated by

perturbative effects

I(ν, µ2) =M(ν, z23) +
αs
π
CF

∫ 1

0

dwM(wν, z23)

×
{
B(w) ln

[
(1− w)z3µ

eγE+1/2

2

]

+ [(w + 1) ln(1− w)− (1− w)]+

}
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Comparison to global fits after converting to MS
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Reconstruction

Parton distribution functions (PDF) or distribution amplitudes (DA) may be

defined in lattice QCD by inverting the quasi-Fourier transform of a certain

class of hadronic position space matrix elements.

One particular example are the Ioffe-time PDFs MR, which are related to

the physical PDF via the integral relation

MR(ν, µ2) ≡
∫ 1

0

dx cos(νx) qv(x, µ
2) .

Here it is assumed that the lattice computed matrix element is converted to

the MS Ioffe-time PDF at a scale µ2, using a perturbative kernel as

discussed in Radyushkin (Phys.Rev. D98 (2018) no.1, 014019 ), Zhang et al Phys.Rev. D97 (2018) no.7, 074508

The task at hand is then to reconstruct the PDF qv(x, µ
2) given a limited

set of simulated data for MR(ν, µ2).
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Reconstruction

There exist two challenges to this endeavor, the first being that the integral

in question does not extend over the full Brillouin zone, the second that in

practice only a small number of points along ν can be computed.

As we will discuss in more detail below, taken together these issues render

the extraction highly ill-posed and we explore different regularization

strategies on how to nevertheless reliably estimate the PDF from the data

at hand.

Phenomenological investigations of PDFs have shown that their functional

form may be reasonably well approximated by the following simple Ansatz

p(x) =
Γ(a+ b+ 2)

Γ(a+ 1)Γ(b+ 1)
xa(1− x)b .
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Naive Reconstruction

Discretize the integral, employing the trapezoid integration rule

∆x = 1
Nx

, xk = k∆x = k
Nx

MR(ν) = 1
2 cos(νx0) qv(x0)+

Nx−1∑

k=1

δx cos(νxk) qv(xk)+
1

2
cos(νxNx

) qv(xNx
)

We can determine the unknown values of the function qv(xk) by solving a

simple linear system of equations.

Defining mk = MR(νk) where νk are the values of the Ioffe time for which

data is available and q be the vector with components the unknown values

of qv(xk) i.e. qk = qv(xk). Our problem is cast in a matrix equation

m = C · q,
The conditioning of the problem is easily elucidated by considering the

eigenvalues of the matrix C.
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Naive Reconstruction
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Eigenvalues λk of the kernel matrix for various discretization intervals.
Only for the case corresponding to a genuine discrete Fourier transform
ν = [0, 40π] all eigenvalues remain of order unity. The realistic case of
ν = [0, 20] already shows a significant degradation of the spectrum.
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Naive Reconstruction
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Results for the direct inversion for different discretization intervals
(left ν = [0, 40π], center ν = [0, 100], right ν = [0, 20]). Note the different
size of the relative errors needed, to obtain a well behaved result (left
∆MR/MR = 10−2, center ∆MR/MR = 10−5, right ∆MR/MR = 10−6).
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Advanced PDF Reconstructions

A versatile approach is Bayesian inference Y. Burnier and A. Rothkopf Phys.Rev.Lett. 111 (2013)

It acknowledges the fact that the inverse problem is ill-defined and a unique

answer may only provided, once further information about the system has

been made available.

Formulated in terms of probabilities, one finds in the form of Bayes theorem

that

P [q|M, I] =
P [M|q, I]P [q|I]

P [M|I]
.

It states that the so called posterior probability P [q|M, I] for a test function

q to be the correct x-space PDF, given our simulated Ioffe-time PDF M and

additional prior information may be expressed in terms of three quantities.
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Bayesian Reconstruction

P [q|M, I] =
P [M|q, I]P [q|I]

P [M|I]
.

The likelihood probability P [M|q, I] denotes how probable it is to find the

data M if q were the correct PDF.

Finding the most probable q by maximizing the likelihood is nothing but a

χ2 fit to the M data, which as we saw from the direct inversion is by itself

ill-defined.

The prior probability P [q|I], which quantifies, how compatible our test

function q is with respect to any prior information we have (e.g. appearance

of non-analytic behavior of q(x) at the boundaries of the x interval).

P [M|I], the so called evidence is a q independent normalization.
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Bayesian Reconstruction

For sampled data, due to the central limit theorem, the likelihood

probability may be written as the quadratic distance functional

P [M|q, I] = exp[−L] with L = 1
2

∑
k,l(Mk −Mq

k)C−1kl (Ml −Mq
l ).

Mq
k are the Ioffe-time data arising from inserting the test function q into

the cosine Fourier trafo and Ckl denotes the covariance matrix of the Nm

measurements of simulation data Mh
k .

We then specify an appropriate prior probability P [q|I] = exp[αS[I]].

Prior information enters in two ways here. On the one hand we deploy a

particular functional form of the regularization functional

SBR[q,m] =
∑

n

∆xn

(
1− qn

mn
+ log

( qn
mn

))

which may be obtained by requiring positive definiteness of the resulting q,

smoothness of q.
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Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.
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Bayesian Reconstruction

What happens in the case of non-guaranteed positive definiteness?

We need to change the regulator!

Often the quadratic regulator is used

SQDR[q,m] =
∑

n

∆xn

(
qn −mn

)2

It is a comparatively strong regulator and usually imprints the form of the

default model significantly onto the end result.

Trying to keep the influence of the default model to a minimum, we extend

the BR prior to non-positive functions.

SBRg[q,m] =
∑

n

∆xn

(
− |qn −mn|

hn
+ log

( |qn −mn|
hn

− 1
))

keeping the advantageous properties of the original BR prior at the price of

having to introduce another default model related function h.
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keeping the advantageous properties of the original BR prior at the price of

having to introduce another default model related function h.
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Bayesian Reconstruction

once L, S and m have been provided, the most probable PDF q, given

simulation data and prior information is obtained by numerically finding the

extremum of the posterior

δP [q|M, I]

δq

∣∣∣∣
q=qBayes

= 0.

It has been proven that if the regulator is strictly concave, as is the case for

all the regulators discussed above, there only exists a single unique

extremum in the space of functions q on a discrete ν interval.

With positive definiteness is imposed on the end result, the space of

admissible solutions is significantly reduced. Regulators admitting also q

functions with negative contributions have to distinguish between a

multitude of oscillatory functions, which if integrated over, resemble a

monotonous function to high precision. We will observe the emergence of

ringing artefacts for the quadratic and generalized BR prior.
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Bayesian Reconstruction
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x-space PDF’s reconstructed using the BR method from Nν = 10 Ioffe-time
data points on the interval ν = [0, 20] The plots in the left column denote
the results for mock data based on a phenomenological PDF
(NNPDF31 nnlo as 0118), while the right column arises from a scenario
where q(0) is finite.
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x-space PDF’s reconstructed using a quadratic prior Bayesian (QDR) method
from Nν = 10 Ioffe-time data points on the interval ν = [0, 20]. The plots in
the left column denote the results for mock data based on a
phenomenological PDF (NNPDF31 nnlo as 0118), while the right column
arises from a scenario where q(0) is finite.
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Bayesian Reconstruction

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

q(
x)

x

mock PDF A

BRg w/ best fit m(x)

statistical
uncertainty

m dependence

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

q(
x)

x

mock PDF B

BRg w/ best fit m(x)

statistical
uncertainty

m dependence

x-space PDF’s reconstructed using the generalized Bayesian reconstruction
(BRg) method from Nν = 10 Ioffe-time data points on the interval
ν = [0, 20]. The plots in the left column denote the results for mock data
based on a phenomenological PDF (NNPDF31 nnlo as 0118), while the right
column arises from a scenario where q(0) is finite.
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Bayesian Reconstruction
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x-space PDF’s reconstructed in a best case scenario (ν = [0, 100], Nν = 100)) using
(left) the BR method (center) the quadratic prior and (right) the generalized BR
method. The input data again is the one from a (top) Nν = 100 discretized
Ioffe-time realistic PDF , while the bottom row arises from a scenario where q(0) is
finite.
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Backus-Gilbert Reconstruction

The Backus-Gilbert (BG) method instead of imposing a smoothing

condition on the resulting PDF q(x) it imposes a minimization condition on

the variance of the resulting function. G. Backus and F. Gilbert. Geophysical Journal of the Royal

Astronomical Society, 16:169205, (1968)

Let us define a rescaled kernel and rescaled PDF h(x)

Kj(x) ≡ cos(νjx)p(x) and , h(x) ≡ qv(x)

p(x)

where p(x) corresponds to an appropriately chosen function that makes the

problem easier to solve.

We wish to incorporate into p(x) most of the non-trivial structure of q(x)

apriorily, such that h(x) is a slowly varying function of x and contains only

the deviation of q(x) from p(x).
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Backus-Gilbert Reconstruction

Starting from the preconditioned expression with a rescaled PDF h(x) that

is only a slowly varying function of x our inverse problem becomes

dj ≡MR(νj) =

∫ 1

0

dxKj(x)h(x) .

BG introduces a function ∆(x− x̄) =
∑
j qj(x̄)Kj(x), where qj(x̄) are

unknown functions to be determined.

It then estimates the unknown function as a linear combination of the data

ĥ(x̄) =
∑

j

qj(x̄)dj , or q̂v(x̄) =
∑

j

qj(x̄)djp(x̄)

If ∆(x− x̄) were to be a δ−function then ĥ(x̄) = h(x̄). If ∆(x− x̄)

approximates a δ-function with a width σ, then the smaller σ is the better

the approximation of ĥ(x) to h(x).
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Backus-Gilbert Reconstruction

In other words if ĥσ(x) is the approximation resulting from ∆(x) with a

width σ then limσ→0 ĥσ(x) = h(x) .

With this in mind BG minimizes the width σ given by

σ =

∫ 1

0

dx(x− x̄)2∆(x− x̄)2 .

Furthermore, if ∆(x) approximates a δ-function then one has to impose the

constraint
∫ 1

0
dx∆(x− x̄) = 1. Using a Lagrange multiplier λ one can

minimize the width and impose the constraint by minimizing

χ[q] =

∫ 1

0

dx(x−x̄)2
∑

j,k

qj(x̄)Kj(x)Kk(x)qk(x̄)+λ

∫ 1

0

dx
∑

j

Kj(x)qj(x̄) .

But let’s see all this in practise ...
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Backus-Gilbert reconstruction
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Backus-Gilbert Reconstruction
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Left: The NNPDF31 nnlo as 0118 Ioffe time PDF data points used in this
example, together with the dashed curve from which the data are chosen.
Right: The reconstructed Backus-Gilbert reconstructed PDF (red) together
with the original PDF from the NNPDF31 nnlo as 0118 dataset (blue) with
b = 2 and νmax = 20.
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Backus-Gilbert Reconstruction
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b = 2 and νmax = 30.
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Backus-Gilbert Reconstruction
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Neural Network Reconstruction

VERY PRELIMINARY RESULTS!!!
Scenario A

 Data points (red not visible)
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Left: Original data points (red) not visible. Red band representing errors on
the original data points. Reconstructed data points (blue). Right: Original
PDF (blue). Reconstructed PDF (red).
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Neural Network Reconstruction

VERY PRELIMINARY RESULTS!!!
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Original PDF (blue)Left: Original data points (red) not visible. Red band representing errors on

the original data points. Reconstructed data points (blue). Right: Original
PDF (blue). Reconstructed PDF (red).
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Conclusions-Outlook

We studied in detail the problem of PDF reconstructions out of Ioffe time

data

An extremely ill-defined problem due to restricted range and number of ν

data.

We showed how methods of advanced reconstruction that have been

successfully applied to different inverse problems in LQCD can also become

handy for this task.

We stressed the necessity of additional info in order to be able to provide a

unique answer.

These methods would be key ingredients of future studies.

Many thanks for your attention!!!
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Bayesian Reconstruction

The functional S depends on the function m, the default model.

By construction constitutes its unique extremum.

In the Bayesian logic m is the correct result for q in the absence of any data.

We select m by a best fit of the Ioffe-PDF data and we will vary it to get a

handle on systematics.

In the definition of P [q|I] we introduced a further parameter α, a so called

hyperparameter

Weighs the influence of simulation data and prior information. It has to be

taken care of self-consistently.

In the Maximum Entropy Method α is selected, such that the evidence has

an extremum. In the BR method we deploy here, we marginalize the

parameter α apriori, i.e. we integrate the posterior w.r.t the

hyperparameter, assuming complete ignorance of its values P [α] = 1.
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Bayesian Reconstruction
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Best fit PDF (red solid line) from (left) realistic PDF data [mock scenario A]
and (right) from a PDF Ansatz q(x) = p(x, 2

10 ,
7
10 ) [mock scenario B]. The

actual mock PDF in both cases is given as gray solid line. To determine the
dependence of our results on the choice of default model, three further
choices for m are plotted, two arising from varying the best fit parameters by
factors of 2, one being the constant default model m=1.
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Neural Network Reconstruction

The ensemble average of data is obtained in two steps

I Starting from random [w, b], minimize χ2 to find [w, b].

I Repeat 10 times to find 10 different Neural Nets (replicas).

For each Neural Net, the minimizer is re-run for each jackknife sample to

obtain a jackknife estimate q(x) for each replica.

The central value of q(x) is estimated as the average over jackknife samples

and replicas.

The error is estimated by combining the fluctuations over the jackknife

sample and replicas.

Savvas Zafeiropoulos Progress on pseudo-PDFs I 3/3



Neural Network Reconstruction
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