

Progress on parton pseudo distributions I

Savvas Zafeiropoulos

Universität Heidelberg

23.07.2018 Lattice 2018

In collaboration with J. Karpie (College of William & Mary), K. Orginos (College of William & Mary and JLAB), A. Radyushkin (ODU and JLAB) and A. Rothkopf (Stavanger U.)

Light-like is a NO-GO

Hadronic Tensor Methods

"Light-like" separated Hadronic Tensor к. F. Liu et al Phys.Rev.Lett. 72 (1994), А. J. Chambers et al

Phys.Rev.Lett. 118 (2017)

loffe Time Pseudo Distribution Methods

- quasi-PDFs (X. Ji Phys.Rev.Lett. 110, (2013))
- pseudo-PDFs (A. Radyushkin Phys.Lett. B767 (2017))

Similarly to a global QCD analysis of high energy scattering data, PDFs can also be extracted from analyzing data generated by lattice-QCD calculation of good lattice cross-sections Y.-Q. Ma and J.-W. Qiu Phys. Rev. Lett. 120 (2018)

Computing PDFs in LQCD we start from the equal time hadronic matrix element with the quark and anti-quark fields separated by a finite distance. For non-singlet parton densities the matrix element

$$\mathcal{M}^{\alpha}(z,p) \equiv \langle p | \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0,z;A) \tau_{3} \psi(z) | p \rangle$$

where $\hat{E}(0, z; A)$ is the $0 \rightarrow z$ straight-line gauge link in the fundamental representation, τ_3 is the flavor Pauli matrix, and γ^a is a gamma matrix. We can decompose the matrix element due to Lorentz invariance as

$$\mathcal{M}^{\alpha}(z,p) = 2p^{\alpha}\mathcal{M}_p(-(zp),-z^2) + z^{\alpha}\mathcal{M}_z(-(zp),-z^2)$$

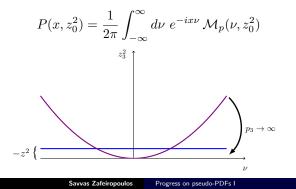
- From the $\mathcal{M}_p(-(zp), -z^2)$ part the twist-2 contribution to PDFs can be obtained in the limit $z^2 \to 0$.
- By taking $z = (0, 0, 0, z_3)$, α in the temporal direction i.e. $\alpha = 0$, and the hadron momentum $p = (p^0, 0, 0, p)$ the z^{α} -part drops out.
- \blacksquare The Lorentz invariant quantity $\nu=-(zp),$ is the "loffe time" (B. L. loffe, Phys. Lett. 30B, 123 (1969)) and

$$\langle p|\bar{\psi}(0)\,\gamma^0\,\hat{E}(0,z;A)\tau_3\psi(z)|p\rangle = 2p^0\mathcal{M}_p(\nu,z_3^2)$$

 \blacksquare The quasi-PDF $Q(x,p^2)$ is related to $\mathcal{M}_p(\nu,z_3^2)$ by

$$Q(x, p^{2}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu \ e^{-ix\nu} \ \mathcal{M}_{p}(\nu, [\nu/p]^{2})$$

Quasi PDF mixes invariant scales until *p*_z is effectively large enough ■ While the pseudo-PDF has fixed invariant scale dependence



loffe time PDFs $\mathcal{M}(\nu, z_3^2)$ defined at a scale $\mu^2 = 4e^{-2\gamma_E}/z_3^2$ (at leading log level) are the Fourier transform of regular PDFs $f(x, \mu^2)$. (I.I. Balitsky and V.M. Braun, Nucl.

Phys. B311, 541 (1988), V. Braun, et. al Phys. Rev. D 51, 6036 (1995)), A. Radyushkin Phys.Rev. D98 (2018) no.1, 014019

$$\mathcal{M}(\nu, z_3^2) = \int_{-1}^1 dx \, f(x, 1/z_3^2) e^{ix\nu}$$

Scale dependence of the loffe time PDF derived from the DGLAP evolution of the regular PDFs.

loffe time PDFs evolution equation

$$\frac{d}{d\ln z_3^2} \mathcal{M}(\nu, z_3^2) = -\frac{\alpha_s}{2\pi} C_F \int_0^1 du \, B(u) \mathcal{M}(u\nu, z_3^2)$$

with $B(u) = \left[\frac{1+u^2}{1-u}\right]_+$, $C_F = 4/3$, and B(u) is the LO evolution kernel for the non-singlet quark PDF (V. Braun, et. al Phys. Rev. D 51, 6036 (1995))

Obtaining the loffe time PDF

$$z_3 \to 0 \Rightarrow \mathcal{M}_p(\nu, z_3^2) = \mathcal{M}(\nu, z_3^2) + \mathcal{O}(z_3^2)$$

But.... large $\mathcal{O}(z_3^2)$ corrections prohibit the extraction. Conservation of the vector current implies $\mathcal{M}_p(0, z_3^2) = 1 + \mathcal{O}(z_3^2)$, but in a ratio z_3^2 corrections (related to the transverse structure of the hadron) might cancel (A. Radyushkin Phys.Lett. B767 (2017))

$$\mathfrak{M}(\nu, z_3^2) \equiv \frac{\mathcal{M}_p(\nu, z_3^2)}{\mathcal{M}_p(0, z_3^2)}$$

- Much smaller $\mathcal{O}(z_3^2)$ corrections and therefore this ratio could be used to extract the loffe time PDFs
- A well defined continuum limit and does not require renormalization

Matching to \overline{MS}

- In Phys.Rev. D98 (2018) no.1, 014019 it was shown by Radyushkin that at 1-loop evolution and matching to \overline{MS} can be done simultaneously.
- This establishes a direct relation between the loffe time distribution function (ITDF) and pseudo-ITDF.
- Scales are needed as such that we are in a regime dominated by perturbative effects

$$\begin{split} I(\nu,\mu^2) = \mathfrak{M}(\nu,z_3^2) + \frac{\alpha_s}{\pi} C_F \int_0^1 dw \, \mathfrak{M}(w\nu,z_3^2) \\ \times \left\{ B(w) \, \ln\left[(1-w) z_3 \mu \frac{e^{\gamma_E + 1/2}}{2} \right] \\ + \left[(w+1) \ln(1-w) - (1-w) \right]_+ \right\} \end{split}$$

Matching to \overline{MS}

- In Phys.Rev. D98 (2018) no.1, 014019 it was shown by Radyushkin that at 1-loop evolution and matching to \overline{MS} can be done simultaneously.
- This establishes a direct relation between the loffe time distribution function (ITDF) and pseudo-ITDF.
- Scales are needed as such that we are in a regime dominated by perturbative effects

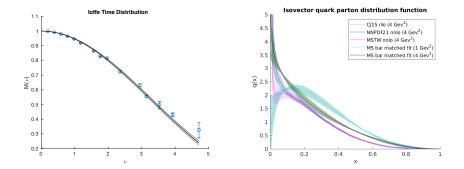
$$\begin{split} \mathcal{I}(\nu,\mu^2) = \mathfrak{M}(\nu,z_3^2) + \frac{\alpha_s}{\pi} C_F \int_0^1 dw \, \mathfrak{M}(w\nu,z_3^2) \\ \times \left\{ B(w) \, \ln\left[(1-w) z_3 \mu \frac{e^{\gamma_E + 1/2}}{2} \right] \\ + \left[(w+1) \ln(1-w) - (1-w) \right]_+ \right\} \end{split}$$

Matching to \overline{MS}

- In Phys.Rev. D98 (2018) no.1, 014019 it was shown by Radyushkin that at 1-loop evolution and matching to \overline{MS} can be done simultaneously.
- This establishes a direct relation between the loffe time distribution function (ITDF) and pseudo-ITDF.
- Scales are needed as such that we are in a regime dominated by perturbative effects

$$\begin{aligned} \mathcal{I}(\nu,\mu^2) = \mathfrak{M}(\nu,z_3^2) + \frac{\alpha_s}{\pi} C_F \int_0^1 dw \, \mathfrak{M}(w\nu,z_3^2) \\ \times \left\{ B(w) \, \ln\left[(1-w) z_3 \mu \frac{e^{\gamma_E + 1/2}}{2} \right] \\ + \left[(w+1) \ln(1-w) - (1-w) \right]_+ \right\} \end{aligned}$$

Comparison to global fits after converting to \overline{MS}



- Parton distribution functions (PDF) or distribution amplitudes (DA) may be defined in lattice QCD by inverting the quasi-Fourier transform of a certain class of hadronic position space matrix elements.
- One particular example are the loffe-time PDFs M_R, which are related to the physical PDF via the integral relation

$$\mathfrak{M}_R(\nu,\mu^2) \equiv \int_0^1 dx \, \cos(\nu x) \, q_v(x,\mu^2) \, .$$

- Here it is assumed that the lattice computed matrix element is converted to the \overline{MS} loffe-time PDF at a scale μ^2 , using a perturbative kernel as discussed in Radyushkin (Phys.Rev. D96 (2018) no.1, 014019), Zhang et al Phys.Rev. D97 (2018) no.7, 074508
- The task at hand is then to reconstruct the PDF $q_v(x, \mu^2)$ given a limited set of simulated data for $\mathfrak{M}_R(\nu, \mu^2)$.

- Parton distribution functions (PDF) or distribution amplitudes (DA) may be defined in lattice QCD by inverting the quasi-Fourier transform of a certain class of hadronic position space matrix elements.
- One particular example are the loffe-time PDFs 𝔐_R, which are related to the physical PDF via the integral relation

$$\mathfrak{M}_R(\nu,\mu^2) \equiv \int_0^1 dx \, \cos(\nu x) \, q_v(x,\mu^2) \, .$$

- Here it is assumed that the lattice computed matrix element is converted to the \overline{MS} loffe-time PDF at a scale μ^2 , using a perturbative kernel as discussed in Radyushkin (Phys.Rev. D96 (2018) no.1, 014019). Zhang et al Phys.Rev. D97 (2018) no.7, 074508
- The task at hand is then to reconstruct the PDF $q_v(x, \mu^2)$ given a limited set of simulated data for $\mathfrak{M}_R(\nu, \mu^2)$.

- Parton distribution functions (PDF) or distribution amplitudes (DA) may be defined in lattice QCD by inverting the quasi-Fourier transform of a certain class of hadronic position space matrix elements.
- One particular example are the loffe-time PDFs \mathfrak{M}_R , which are related to the physical PDF via the integral relation

$$\mathfrak{M}_R(\nu,\mu^2) \equiv \int_0^1 dx \, \cos(\nu x) \, q_v(x,\mu^2) \, .$$

- Here it is assumed that the lattice computed matrix element is converted to the \overline{MS} loffe-time PDF at a scale μ^2 , using a perturbative kernel as discussed in Radyushkin (Phys.Rev. D98 (2018) no.1, 014019). Zhang et al Phys.Rev. D97 (2018) no.7, 074508
- The task at hand is then to reconstruct the PDF $q_v(x, \mu^2)$ given a limited set of simulated data for $\mathfrak{M}_R(\nu, \mu^2)$.

- Parton distribution functions (PDF) or distribution amplitudes (DA) may be defined in lattice QCD by inverting the quasi-Fourier transform of a certain class of hadronic position space matrix elements.
- One particular example are the loffe-time PDFs \mathfrak{M}_R , which are related to the physical PDF via the integral relation

$$\mathfrak{M}_R(\nu,\mu^2) \equiv \int_0^1 dx \, \cos(\nu x) \, q_v(x,\mu^2) \, .$$

- Here it is assumed that the lattice computed matrix element is converted to the \overline{MS} loffe-time PDF at a scale μ^2 , using a perturbative kernel as discussed in Radyushkin (Phys.Rev. D98 (2018) no.1, 014019). Zhang et al Phys.Rev. D97 (2018) no.7, 074508
- The task at hand is then to reconstruct the PDF $q_v(x, \mu^2)$ given a limited set of simulated data for $\mathfrak{M}_R(\nu, \mu^2)$.

- There exist two challenges to this endeavor, the first being that the integral in question does not extend over the full Brillouin zone, the second that in practice only a small number of points along ν can be computed.
- As we will discuss in more detail below, taken together these issues render the extraction highly ill-posed and we explore different regularization strategies on how to nevertheless reliably estimate the PDF from the data at hand.
- Phenomenological investigations of PDFs have shown that their functional form may be reasonably well approximated by the following simple Ansatz

$$p(x) = \frac{\Gamma(a+b+2)}{\Gamma(a+1)\Gamma(b+1)} x^a (1-x)^b \,.$$

- There exist two challenges to this endeavor, the first being that the integral in question does not extend over the full Brillouin zone, the second that in practice only a small number of points along ν can be computed.
- As we will discuss in more detail below, taken together these issues render the extraction highly ill-posed and we explore different regularization strategies on how to nevertheless reliably estimate the PDF from the data at hand.
- Phenomenological investigations of PDFs have shown that their functional form may be reasonably well approximated by the following simple Ansatz

$$p(x) = \frac{\Gamma(a+b+2)}{\Gamma(a+1)\Gamma(b+1)} x^a (1-x)^b \,.$$

- There exist two challenges to this endeavor, the first being that the integral in question does not extend over the full Brillouin zone, the second that in practice only a small number of points along ν can be computed.
- As we will discuss in more detail below, taken together these issues render the extraction highly ill-posed and we explore different regularization strategies on how to nevertheless reliably estimate the PDF from the data at hand.
- Phenomenological investigations of PDFs have shown that their functional form may be reasonably well approximated by the following simple Ansatz

$$p(x) = \frac{\Gamma(a+b+2)}{\Gamma(a+1)\Gamma(b+1)} x^{a} (1-x)^{b}.$$

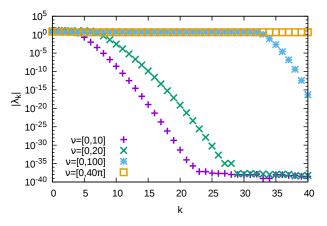
Naive Reconstruction

Discretize the integral, employing the trapezoid integration rule

•
$$\Delta x = \frac{1}{N_x}$$
, $x_k = k\Delta x = \frac{k}{N_x}$
 $\mathfrak{M}_R(\nu) = \frac{1}{2}\cos(\nu x_0) q_v(x_0) + \sum_{k=1}^{N_x-1} \delta x \cos(\nu x_k) q_v(x_k) + \frac{1}{2}\cos(\nu x_{N_x}) q_v(x_{N_x})$
We can determine the unknown values of the function $q_v(x_k)$ by solving a simple linear system of equations.

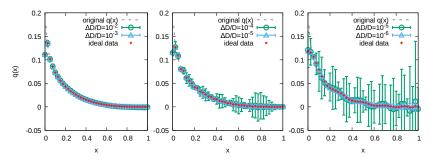
- Defining m_k = M_R(v_k) where v_k are the values of the loffe time for which data is available and q be the vector with components the unknown values of q_v(x_k) *i.e.* q_k = q_v(x_k). Our problem is cast in a matrix equation m = C · q,
- The conditioning of the problem is easily elucidated by considering the eigenvalues of the matrix 𝔅.

Naive Reconstruction



Eigenvalues λ_k of the kernel matrix for various discretization intervals. Only for the case corresponding to a genuine discrete Fourier transform $\nu = [0, 40\pi]$ all eigenvalues remain of order unity. The realistic case of $\nu = [0, 20]$ already shows a significant degradation of the spectrum.

Naive Reconstruction



Results for the direct inversion for different discretization intervals (left $\nu = [0, 40\pi]$, center $\nu = [0, 100]$, right $\nu = [0, 20]$). Note the different size of the relative errors needed, to obtain a well behaved result (left $\Delta \mathfrak{M}_R/\mathfrak{M}_R = 10^{-2}$, center $\Delta \mathfrak{M}_R/\mathfrak{M}_R = 10^{-5}$, right $\Delta \mathfrak{M}_R/\mathfrak{M}_R = 10^{-6}$).

Advanced PDF Reconstructions

A versatile approach is Bayesian inference Y. Burnier and A. Rothkopf Phys.Rev.Lett. 111 (2013)

- It acknowledges the fact that the inverse problem is ill-defined and a unique answer may only provided, once further information about the system has been made available.
- Formulated in terms of probabilities, one finds in the form of Bayes theorem that

$$P[q|\mathfrak{M}, I] = \frac{P[\mathfrak{M}|q, I]P[q|I]}{P[\mathfrak{M}|I]}.$$

It states that the so called posterior probability $P[q|\mathfrak{M}, I]$ for a test function q to be the correct x-space PDF, given our simulated loffe-time PDF \mathfrak{M} and additional prior information may be expressed in terms of three quantities.

Advanced PDF Reconstructions

- A versatile approach is Bayesian inference Y. Burnier and A. Rothkopf Phys.Rev.Lett. 111 (2013)
- It acknowledges the fact that the inverse problem is ill-defined and a unique answer may only provided, once further information about the system has been made available.
- Formulated in terms of probabilities, one finds in the form of Bayes theorem that

$$P[q|\mathfrak{M}, I] = \frac{P[\mathfrak{M}|q, I]P[q|I]}{P[\mathfrak{M}|I]}.$$

It states that the so called posterior probability $P[q|\mathfrak{M}, I]$ for a test function q to be the correct x-space PDF, given our simulated loffe-time PDF \mathfrak{M} and additional prior information may be expressed in terms of three quantities.

Advanced PDF Reconstructions

- A versatile approach is Bayesian inference Y. Burnier and A. Rothkopf Phys.Rev.Lett. 111 (2013)
- It acknowledges the fact that the inverse problem is ill-defined and a unique answer may only provided, once further information about the system has been made available.
- Formulated in terms of probabilities, one finds in the form of Bayes theorem that

$$P[q|\mathfrak{M}, I] = \frac{P[\mathfrak{M}|q, I]P[q|I]}{P[\mathfrak{M}|I]}.$$

It states that the so called posterior probability $P[q|\mathfrak{M}, I]$ for a test function q to be the correct x-space PDF, given our simulated loffe-time PDF \mathfrak{M} and additional prior information may be expressed in terms of three quantities.

$$P[q|\mathfrak{M}, I] = \frac{P[\mathfrak{M}|q, I]P[q|I]}{P[\mathfrak{M}|I]}.$$

- The likelihood probability *P*[𝔅|*q*, *I*] denotes how probable it is to find the data 𝔅 if *q* were the correct PDF.
- Finding the most probable q by maximizing the likelihood is nothing but a χ^2 fit to the \mathfrak{M} data, which as we saw from the direct inversion is by itself ill-defined.
- The prior probability P[q|I], which quantifies, how compatible our test function q is with respect to any prior information we have (e.g. appearance of non-analytic behavior of q(x) at the boundaries of the x interval).
- $P[\mathfrak{M}|I]$, the so called evidence is a q independent normalization.

- For sampled data, due to the central limit theorem, the likelihood probability may be written as the quadratic distance functional $P[\mathfrak{M}|q,I] = \exp[-L]$ with $L = \frac{1}{2} \sum_{k,l} (\mathfrak{M}_k \mathfrak{M}_k^q) C_{kl}^{-1} (\mathfrak{M}_l \mathfrak{M}_l^q)$.
- \mathfrak{M}_k^q are the loffe-time data arising from inserting the test function q into the cosine Fourier trafo and C_{kl} denotes the covariance matrix of the N_m measurements of simulation data \mathfrak{M}_k^h .
- We then specify an appropriate prior probability $P[q|I] = \exp[\alpha S[I]]$.
- Prior information enters in two ways here. On the one hand we deploy a particular functional form of the regularization functional

$$S_{BR}[q,m] = \sum_{n} \Delta x_n \left(1 - \frac{q_n}{m_n} + \log\left(\frac{q_n}{m_n}\right) \right)$$

- For sampled data, due to the central limit theorem, the likelihood probability may be written as the quadratic distance functional P[𝔅|q, I] = exp[-L] with L = ¹/₂ ∑_{k,l}(𝔅_k 𝔅^q_k)C⁻¹_{kl}(𝔅_k 𝔅^q_k)C⁻¹_{kl}(𝔅_k 𝔅^q_k)C⁻¹_{kl}(𝔅_k 𝔅^q_k).
- M^q_k are the loffe-time data arising from inserting the test function q into
 the cosine Fourier trafo and C_{kl} denotes the covariance matrix of the N_m
 measurements of simulation data M^h_k.
- We then specify an appropriate prior probability $P[q|I] = \exp[\alpha S[I]]$.
- Prior information enters in two ways here. On the one hand we deploy a particular functional form of the regularization functional

$$S_{BR}[q,m] = \sum_{n} \Delta x_n \left(1 - \frac{q_n}{m_n} + \log\left(\frac{q_n}{m_n}\right) \right)$$

- For sampled data, due to the central limit theorem, the likelihood probability may be written as the quadratic distance functional $P[\mathfrak{M}|q,I] = \exp[-L]$ with $L = \frac{1}{2} \sum_{k,l} (\mathfrak{M}_k \mathfrak{M}_k^q) C_{kl}^{-1} (\mathfrak{M}_l \mathfrak{M}_l^q)$.
- \mathfrak{M}_k^q are the loffe-time data arising from inserting the test function q into the cosine Fourier trafo and C_{kl} denotes the covariance matrix of the N_m measurements of simulation data \mathfrak{M}_k^h .
- We then specify an appropriate prior probability $P[q|I] = \exp[\alpha S[I]]$.
- Prior information enters in two ways here. On the one hand we deploy a particular functional form of the regularization functional

$$S_{BR}[q,m] = \sum_{n} \Delta x_n \left(1 - \frac{q_n}{m_n} + \log\left(\frac{q_n}{m_n}\right) \right)$$

- For sampled data, due to the central limit theorem, the likelihood probability may be written as the quadratic distance functional P[𝔅|q, I] = exp[-L] with L = ¹/₂ ∑_{k,l}(𝔅_k - 𝔅^q_k)C⁻¹_{kl}(𝔅_k - 𝔅^q_k)C⁻¹_{kl}(𝔅_k - 𝔅^q_k).
- M^q_k are the loffe-time data arising from inserting the test function q into
 the cosine Fourier trafo and C_{kl} denotes the covariance matrix of the N_m
 measurements of simulation data M^h_k.
- We then specify an appropriate prior probability $P[q|I] = \exp[\alpha S[I]]$.
- Prior information enters in two ways here. On the one hand we deploy a particular functional form of the regularization functional

$$S_{BR}[q,m] = \sum_{n} \Delta x_n \left(1 - \frac{q_n}{m_n} + \log\left(\frac{q_n}{m_n}\right) \right)$$

- \blacksquare The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select *m* by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.

- \blacksquare The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.

- \blacksquare The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select *m* by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.

- \blacksquare The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select *m* by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.

- What happens in the case of non-guaranteed positive definiteness?
- We need to change the regulator!
- Often the quadratic regulator is used

$$S_{QDR}[q,m] = \sum_{n} \Delta x_n \left(q_n - m_n \right)^2$$

- It is a comparatively strong regulator and usually imprints the form of the default model significantly onto the end result.
- Trying to keep the influence of the default model to a minimum, we extend the BR prior to non-positive functions.

$$S_{BRg}[q,m] = \sum_{n} \Delta x_n \Big(-\frac{|q_n - m_n|}{h_n} + \log(\frac{|q_n - m_n|}{h_n} - 1) \Big)$$

keeping the advantageous properties of the original BR prior at the price of having to introduce another default model related function *h*.

- What happens in the case of non-guaranteed positive definiteness?
- We need to change the regulator!

Often the quadratic regulator is used

$$S_{QDR}[q,m] = \sum_{n} \Delta x_n \left(q_n - m_n \right)^2$$

- It is a comparatively strong regulator and usually imprints the form of the default model significantly onto the end result.
- Trying to keep the influence of the default model to a minimum, we extend the BR prior to non-positive functions.

$$S_{BRg}[q,m] = \sum_{n} \Delta x_n \Big(-\frac{|q_n - m_n|}{h_n} + \log(\frac{|q_n - m_n|}{h_n} - 1) \Big)$$

keeping the advantageous properties of the original BR prior at the price of having to introduce another default model related function *h*.

- What happens in the case of non-guaranteed positive definiteness?
- We need to change the regulator!
- Often the quadratic regulator is used

$$S_{QDR}[q,m] = \sum_{n} \Delta x_n (q_n - m_n)^2$$

- It is a comparatively strong regulator and usually imprints the form of the default model significantly onto the end result.
- Trying to keep the influence of the default model to a minimum, we extend the BR prior to non-positive functions.

$$S_{BRg}[q,m] = \sum_{n} \Delta x_n \Big(-\frac{|q_n - m_n|}{h_n} + \log(\frac{|q_n - m_n|}{h_n} - 1) \Big)$$

keeping the advantageous properties of the original BR prior at the price of having to introduce another default model related function *h*.

- What happens in the case of non-guaranteed positive definiteness?
- We need to change the regulator!
- Often the quadratic regulator is used

$$S_{QDR}[q,m] = \sum_{n} \Delta x_n (q_n - m_n)^2$$

- It is a comparatively strong regulator and usually imprints the form of the default model significantly onto the end result.
- Trying to keep the influence of the default model to a minimum, we extend the BR prior to non-positive functions.

$$S_{BRg}[q,m] = \sum_{n} \Delta x_n \Big(-\frac{|q_n - m_n|}{h_n} + \log(\frac{|q_n - m_n|}{h_n} - 1) \Big)$$

keeping the advantageous properties of the original BR prior at the price of having to introduce another default model related function *h*.

- What happens in the case of non-guaranteed positive definiteness?
- We need to change the regulator!
- Often the quadratic regulator is used

$$S_{QDR}[q,m] = \sum_{n} \Delta x_n (q_n - m_n)^2$$

- It is a comparatively strong regulator and usually imprints the form of the default model significantly onto the end result.
- Trying to keep the influence of the default model to a minimum, we extend the BR prior to non-positive functions.

$$S_{BRg}[q,m] = \sum_{n} \Delta x_n \Big(-\frac{|q_n - m_n|}{h_n} + \log(\frac{|q_n - m_n|}{h_n} - 1) \Big)$$

keeping the advantageous properties of the original BR prior at the price of having to introduce another default model related function h.

once L, S and m have been provided, the most probable PDF q, given simulation data and prior information is obtained by numerically finding the extremum of the posterior

$$\frac{\delta P[q|\mathfrak{M}, I]}{\delta q}\Big|_{q=q_{\text{Bayes}}} = 0.$$

- It has been proven that if the regulator is strictly concave, as is the case for all the regulators discussed above, there only exists a single unique extremum in the space of functions q on a discrete ν interval.
- With positive definiteness is imposed on the end result, the space of admissible solutions is significantly reduced. Regulators admitting also q functions with negative contributions have to distinguish between a multitude of oscillatory functions, which if integrated over, resemble a monotonous function to high precision. We will observe the emergence of ringing artefacts for the quadratic and generalized BR prior.

once L, S and m have been provided, the most probable PDF q, given simulation data and prior information is obtained by numerically finding the extremum of the posterior

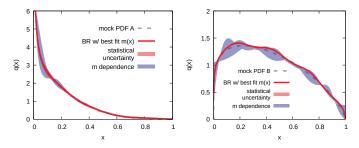
$$\frac{\delta P[q|\mathfrak{M}, I]}{\delta q}\Big|_{q=q_{\text{Bayes}}} = 0.$$

- It has been proven that if the regulator is strictly concave, as is the case for all the regulators discussed above, there only exists a single unique extremum in the space of functions q on a discrete ν interval.
- With positive definiteness is imposed on the end result, the space of admissible solutions is significantly reduced. Regulators admitting also q functions with negative contributions have to distinguish between a multitude of oscillatory functions, which if integrated over, resemble a monotonous function to high precision. We will observe the emergence of ringing artefacts for the quadratic and generalized BR prior.

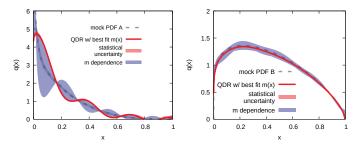
once L, S and m have been provided, the most probable PDF q, given simulation data and prior information is obtained by numerically finding the extremum of the posterior

$$\frac{\delta P[q|\mathfrak{M}, I]}{\delta q}\bigg|_{q=q_{\text{Bayes}}} = 0.$$

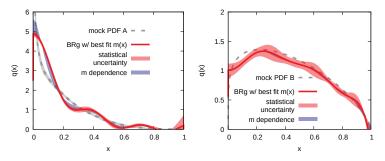
- It has been proven that if the regulator is strictly concave, as is the case for all the regulators discussed above, there only exists a single unique extremum in the space of functions q on a discrete ν interval.
- With positive definiteness is imposed on the end result, the space of admissible solutions is significantly reduced. Regulators admitting also q functions with negative contributions have to distinguish between a multitude of oscillatory functions, which if integrated over, resemble a monotonous function to high precision. We will observe the emergence of ringing artefacts for the quadratic and generalized BR prior.



x-space PDF's reconstructed using the BR method from $N_{\nu} = 10$ loffe-time data points on the interval $\nu = [0, 20]$ The plots in the left column denote the results for mock data based on a phenomenological PDF (NNPDF31_nnlo_as_0118), while the right column arises from a scenario where q(0) is finite.



x-space PDF's reconstructed using a quadratic prior Bayesian (QDR) method from $N_{\nu} = 10$ loffe-time data points on the interval $\nu = [0, 20]$. The plots in the left column denote the results for mock data based on a phenomenological PDF (NNPDF31_nnlo_as_0118), while the right column arises from a scenario where q(0) is finite.



x-space PDF's reconstructed using the generalized Bayesian reconstruction (BRg) method from $N_{\nu} = 10$ loffe-time data points on the interval $\nu = [0, 20]$. The plots in the left column denote the results for mock data based on a phenomenological PDF (NNPDF31_nnlo_as_0118), while the right column arises from a scenario where q(0) is finite.



x-space PDF's reconstructed in a best case scenario ($\nu=[0,100],N_{\nu}=100)$) using (left) the BR method (center) the quadratic prior and (right) the generalized BR method. The input data again is the one from a (top) $N_{\nu}=100$ discretized loffe-time realistic PDF , while the bottom row arises from a scenario where q(0) is finite.

The Backus-Gilbert (BG) method instead of imposing a smoothing condition on the resulting PDF q(x) it imposes a minimization condition on the variance of the resulting function. G. Backus and F. Gilbert. Geophysical Journal of the Royal Astronomical Society. 16:169205, (1968)

 \blacksquare Let us define a rescaled kernel and rescaled PDF h(x)

$$K_j(x) \equiv \cos(\nu_j x) p(x) \text{ and } , h(x) \equiv \frac{q_v(x)}{p(x)}$$

- where *p*(*x*) corresponds to an appropriately chosen function that makes the problem easier to solve.
- We wish to incorporate into p(x) most of the non-trivial structure of q(x) apriorily, such that h(x) is a slowly varying function of x and contains only the deviation of q(x) from p(x).

• Starting from the preconditioned expression with a rescaled PDF h(x) that is only a slowly varying function of x our inverse problem becomes

$$d_j \equiv \mathfrak{M}_R(\nu_j) = \int_0^1 dx K_j(x) h(x) \,.$$

- BG introduces a function $\Delta(x \bar{x}) = \sum_j q_j(\bar{x}) K_j(x)$, where $q_j(\bar{x})$ are unknown functions to be determined.
- It then estimates the unknown function as a linear combination of the data

$$\hat{h}(\bar{x}) = \sum_{j} q_j(\bar{x}) d_j, \text{ or } \hat{q}_v(\bar{x}) = \sum_{j} q_j(\bar{x}) d_j p(\bar{x})$$

If Δ(x − x̄) were to be a δ-function then ĥ(x̄) = h(x̄). If Δ(x − x̄) approximates a δ-function with a width σ, then the smaller σ is the better the approximation of ĥ(x) to h(x).

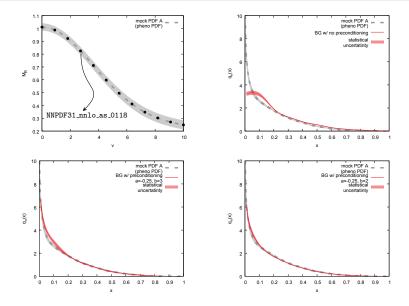
- In other words if $\hat{h}_{\sigma}(x)$ is the approximation resulting from $\Delta(x)$ with a width σ then $\lim_{\sigma \to 0} \hat{h}_{\sigma}(x) = h(x)$.
- With this in mind BG minimizes the width σ given by

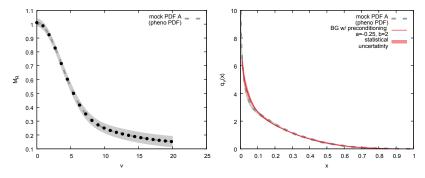
$$\sigma = \int_0^1 dx (x - \bar{x})^2 \Delta (x - \bar{x})^2 \,.$$

Furthermore, if Δ(x) approximates a δ-function then one has to impose the constraint ∫₀¹ dx Δ(x − x̄) = 1. Using a Lagrange multiplier λ one can minimize the width and impose the constraint by minimizing

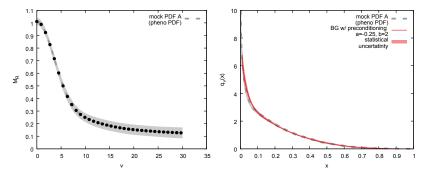
$$\chi[q] = \int_0^1 dx (x - \bar{x})^2 \sum_{j,k} q_j(\bar{x}) K_j(x) K_k(x) q_k(\bar{x}) + \lambda \int_0^1 dx \sum_j K_j(x) q_j(\bar{x}) \,.$$

But let's see all this in practise ...

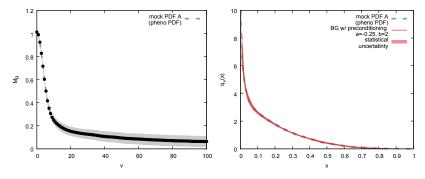




Left: The NNPDF31_nnlo_as_0118 loffe time PDF data points used in this example, together with the dashed curve from which the data are chosen. **Right**: The reconstructed Backus-Gilbert reconstructed PDF (red) together with the original PDF from the NNPDF31_nnlo_as_0118 dataset (blue) with b = 2 and $\nu_{max} = 20$.



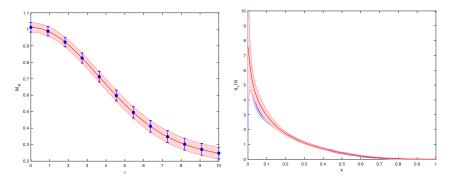
Left: The NNPDF31_nnlo_as_0118 loffe time PDF data points used in this example, together with the dashed curve from which the data are chosen. **Right**: The reconstructed Backus-Gilbert reconstructed PDF (red) together with the original PDF from the NNPDF31_nnlo_as_0118 dataset (blue) with b = 2 and $\nu_{max} = 30$.



Left: The NNPDF31_nnlo_as_0118 loffe time PDF data points used in this example, together with the dashed curve from which the data are chosen. **Right**: The reconstructed Backus-Gilbert reconstructed PDF (red) together with the original PDF from the NNPDF31_nnlo_as_0118 dataset (blue) with b = 2 and $\nu_{max} = 100$.

Neural Network Reconstruction

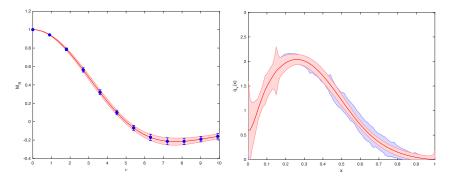
VERY PRELIMINARY RESULTS !!!



Left: Original data points (red) not visible. Red band representing errors on the original data points. Reconstructed data points (blue). **Right**: Original PDF (blue). Reconstructed PDF (red).

Neural Network Reconstruction

VERY PRELIMINARY RESULTS !!!



Left: Original data points (red) not visible. Red band representing errors on the original data points. Reconstructed data points (blue). **Right**: Original PDF (blue). Reconstructed PDF (red).

Conclusions-Outlook

- We studied in detail the problem of PDF reconstructions out of loffe time data
- An extremely ill-defined problem due to restricted range and number of ν data.
- We showed how methods of advanced reconstruction that have been successfully applied to different inverse problems in LQCD can also become handy for this task.
- We stressed the necessity of additional info in order to be able to provide a unique answer.
- These methods would be key ingredients of future studies.
- Many thanks for your attention!!!

- \blacksquare The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.
- \blacksquare In the definition of P[q|I] we introduced a further parameter $\alpha,$ a so called hyperparameter
- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.
- In the Maximum Entropy Method α is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e. we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values P[α] = 1.

- \blacksquare The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- \blacksquare In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.
- \blacksquare In the definition of P[q|I] we introduced a further parameter $\alpha,$ a so called hyperparameter
- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.
- In the Maximum Entropy Method α is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e. we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values P[α] = 1.

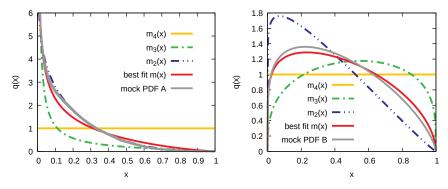
- \blacksquare The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.
- \blacksquare In the definition of P[q|I] we introduced a further parameter $\alpha,$ a so called hyperparameter
- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.
- In the Maximum Entropy Method α is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e. we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values P[α] = 1.

- \blacksquare The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.
- \blacksquare In the definition of P[q|I] we introduced a further parameter $\alpha,$ a so called hyperparameter
- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.
- In the Maximum Entropy Method α is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e. we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values P[α] = 1.

- \blacksquare The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.
- \blacksquare In the definition of P[q|I] we introduced a further parameter $\alpha,$ a so called hyperparameter
- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.
- In the Maximum Entropy Method α is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e. we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values P[α] = 1.

- \blacksquare The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.
- \blacksquare In the definition of P[q|I] we introduced a further parameter $\alpha,$ a so called hyperparameter
- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.
- In the Maximum Entropy Method α is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e. we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values P[α] = 1.

- \blacksquare The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.
- In the definition of P[q|I] we introduced a further parameter $\alpha,$ a so called hyperparameter
- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.
- In the Maximum Entropy Method α is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e. we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values P[α] = 1.



Best fit PDF (red solid line) from (left) realistic PDF data [mock scenario A] and (right) from a PDF Ansatz $q(x) = p(x, \frac{2}{10}, \frac{7}{10})$ [mock scenario B]. The actual mock PDF in both cases is given as gray solid line. To determine the dependence of our results on the choice of default model, three further choices for m are plotted, two arising from varying the best fit parameters by factors of 2, one being the constant default model m=1.

Neural Network Reconstruction

- The ensemble average of data is obtained in two steps
 - Starting from random [w, b], minimize χ^2 to find [w, b].
 - ► Repeat 10 times to find 10 different Neural Nets (replicas).
- For each Neural Net, the minimizer is re-run for each jackknife sample to obtain a jackknife estimate *q*(*x*) for each replica.
- The central value of q(x) is estimated as the average over jackknife samples and replicas.
- The error is estimated by combining the fluctuations over the jackknife sample and replicas.

Neural Network Reconstruction

