Progress on parton pseudo distributions I

Savvas Zafeiropoulos

Universität Heidelberg
23.07.2018

Lattice 2018

In collaboration with J. Karpie (College of William \& Mary), K. Orginos (College of William \& Mary and JLAB), A. Radyushkin (ODU and JLAB) and A. Rothkopf (Stavanger U.)

Light-like is a NO-GO

Hadronic Tensor Methods

- "Light-like" separated Hadronic Tensor K. F. Liu et al Phys.Rev.Lett. 72 (1994), A. J. Chambers et al Phys.Rev.Lett. 118 (2017)

Ioffe Time Pseudo Distribution Methods

- quasi-PDFs (x. Ji Pys.Rev.Lett. 110, (2013))
- pseudo-PDFs (A. Radysskkin Phys. Lett. B767 (2017))

Similarly to a global QCD analysis of high energy scattering data, PDFs can also be extracted from analyzing data generated by lattice-QCD calculation of good lattice cross-sections r.-Q. Ma and J.w. Qiu Phys. Rev. Lett. 120 (2018)

Formalism

Computing PDFs in LQCD we start from the equal time hadronic matrix element with the quark and anti-quark fields separated by a finite distance. For non-singlet parton densities the matrix element

$$
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \tau_{3} \psi(z)|p\rangle
$$

where $\hat{E}(0, z ; A)$ is the $0 \rightarrow z$ straight-line gauge link in the fundamental representation, τ_{3} is the flavor Pauli matrix, and γ^{a} is a gamma matrix. We can decompose the matrix element due to Lorentz invariance as

$$
\mathcal{M}^{\alpha}(z, p)=2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right)+z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
$$

Formalism

- From the $\mathcal{M}_{p}\left(-(z p),-z^{2}\right)$ part the twist-2 contribution to PDFs can be obtained in the limit $z^{2} \rightarrow 0$.

■ By taking $z=\left(0,0,0, z_{3}\right), \alpha$ in the temporal direction i.e. $\alpha=0$, and the hadron momentum $p=\left(p^{0}, 0,0, p\right)$ the z^{α}-part drops out.

- The Lorentz invariant quantity $\nu=-(z p)$, is the "loffe time" (B. L. loffe, Phys. Lett. 30B, 123 (1969)) and

$$
\langle p| \bar{\psi}(0) \gamma^{0} \hat{E}(0, z ; A) \tau_{3} \psi(z)|p\rangle=2 p^{0} \mathcal{M}_{p}\left(\nu, z_{3}^{2}\right)
$$

Formalism

- The quasi-PDF $Q\left(x, p^{2}\right)$ is related to $\mathcal{M}_{p}\left(\nu, z_{3}^{2}\right)$ by

$$
Q\left(x, p^{2}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \nu e^{-i x \nu} \mathcal{M}_{p}\left(\nu,[\nu / p]^{2}\right)
$$

Quasi PDF mixes invariant scales until p_{z} is effectively large enough

- While the pseudo-PDF has fixed invariant scale dependence

Formalism

loffe time PDFs $\mathcal{M}\left(\nu, z_{3}^{2}\right)$ defined at a scale $\mu^{2}=4 e^{-2 \gamma_{E}} / z_{3}^{2}$ (at leading log level) are the Fourier transform of regular PDFs $f\left(x, \mu^{2}\right)$. (1.1. Balitsy and v.m. Braun, Nucl.

Phys. B311, 541 (1988), V. Braun, et. al Phys. Rev. D 51, 6036 (1995)), A. Radyushkin Phys.Rev. D98 (2018) no.1, 014019

$$
\mathcal{M}\left(\nu, z_{3}^{2}\right)=\int_{-1}^{1} d x f\left(x, 1 / z_{3}^{2}\right) e^{i x \nu}
$$

Scale dependence of the loffe time PDF derived from the DGLAP evolution of the regular PDFs.
loffe time PDFs evolution equation

$$
\frac{d}{d \ln z_{3}^{2}} \mathcal{M}\left(\nu, z_{3}^{2}\right)=-\frac{\alpha_{s}}{2 \pi} C_{F} \int_{0}^{1} d u B(u) \mathcal{M}\left(u \nu, z_{3}^{2}\right)
$$

with $B(u)=\left[\frac{1+u^{2}}{1-u}\right]_{+}, C_{F}=4 / 3$, and $B(u)$ is the LO evolution kernel for the non-singlet quark PDF (v. Braun, et. al Phys. Rev. D D51, 0036 (1995))

Obtaining the loffe time PDF

$$
z_{3} \rightarrow 0 \Rightarrow \mathcal{M}_{p}\left(\nu, z_{3}^{2}\right)=\mathcal{M}\left(\nu, z_{3}^{2}\right)+\mathcal{O}\left(z_{3}^{2}\right)
$$

But.... large $\mathcal{O}\left(z_{3}^{2}\right)$ corrections prohibit the extraction.
Conservation of the vector current implies $\mathcal{M}_{p}\left(0, z_{3}^{2}\right)=1+\mathcal{O}\left(z_{3}^{2}\right)$, but in a ratio z_{3}^{2} corrections (related to the transverse structure of the hadron) might cancel (A. Radyushkin Phys.Lett. B767 (2017))

$$
\mathfrak{M}\left(\nu, z_{3}^{2}\right) \equiv \frac{\mathcal{M}_{p}\left(\nu, z_{3}^{2}\right)}{\mathcal{M}_{p}\left(0, z_{3}^{2}\right)}
$$

■ Much smaller $\mathcal{O}\left(z_{3}^{2}\right)$ corrections and therefore this ratio could be used to extract the loffe time PDFs

- A well defined continuum limit and does not require renormalization

Matching to $\overline{M S}$

- In Phys.Rev. D98 (2018) no.1. 014019 it was shown by Radyushkin that at 1-loop evolution and matching to $\overline{M S}$ can be done simultaneously.
- This establishes a direct relation between the loffe time distribution function (ITDF) and pseudo-ITDF
- Scales are needed as such that we are in a regime dominated by perturbative effects

Matching to $\overline{M S}$

- In Phys.Rev. D98 (2018) no.1, 014019 it was shown by Radyushkin that at 1-loop evolution and matching to $\overline{M S}$ can be done simultaneously.
- This establishes a direct relation between the loffe time distribution function (ITDF) and pseudo-ITDF.
- Scales are needed as such that we are in a regime dominated by perturbative effects

Matching to $\overline{M S}$

- In Phys.Rev. D98 (2018) no.1, 014019 it was shown by Radyushkin that at 1-loop evolution and matching to $\overline{M S}$ can be done simultaneously.
- This establishes a direct relation between the loffe time distribution function (ITDF) and pseudo-ITDF.
- Scales are needed as such that we are in a regime dominated by perturbative effects

$$
\begin{aligned}
\mathcal{I}\left(\nu, \mu^{2}\right)= & \mathfrak{M}\left(\nu, z_{3}^{2}\right)+\frac{\alpha_{s}}{\pi} C_{F} \int_{0}^{1} d w \mathfrak{M}\left(w \nu, z_{3}^{2}\right) \\
& \times\left\{B(w) \ln \left[(1-w) z_{3} \mu \frac{e^{\gamma_{E}+1 / 2}}{2}\right]\right. \\
& \left.+[(w+1) \ln (1-w)-(1-w)]_{+}\right\}
\end{aligned}
$$

Comparison to global fits after converting to $\overline{M S}$

Reconstruction

- Parton distribution functions (PDF) or distribution amplitudes (DA) may be defined in lattice QCD by inverting the quasi-Fourier transform of a certain class of hadronic position space matrix elements.
- One particular example are the loffe-time PDFs \mathfrak{N}_{R}, which are related to the physical PDF via the integral relation $\mathfrak{M}_{R}\left(\nu, \mu^{2}\right) \equiv \int_{0}^{1} d x \cos (\nu x) q_{v}\left(x, \mu^{2}\right)$
- Here it is assumed that the lattice computed matrix element is converted to the $\overline{M S}$ loffe-time PDF at a scale μ^{2}, using a perturbative kernel as discussed in
- The task at hand is then to reconstruct the PDF $q_{v}\left(x, \mu^{2}\right)$ given a limited set of simulated data for $\mathfrak{M}_{R}\left(\nu, \mu^{2}\right)$.

Reconstruction

- Parton distribution functions (PDF) or distribution amplitudes (DA) may be defined in lattice QCD by inverting the quasi-Fourier transform of a certain class of hadronic position space matrix elements.

■ One particular example are the loffe-time PDFs \mathfrak{M}_{R}, which are related to the physical PDF via the integral relation

$$
\mathfrak{M}_{R}\left(\nu, \mu^{2}\right) \equiv \int_{0}^{1} d x \cos (\nu x) q_{v}\left(x, \mu^{2}\right) .
$$

- Here it is assumed that the lattice computed matrix element is converted to the $\overline{M S}$ loffe-time PDF at a scale μ^{2}, using a perturbative kernel as discussed in
- The task at hand is then to reconstruct the PDF $q_{v}\left(x, \mu^{2}\right)$ given a limited set of simulated data for $\mathfrak{M}_{R}\left(\nu, \mu^{2}\right)$.

Reconstruction

- Parton distribution functions (PDF) or distribution amplitudes (DA) may be defined in lattice QCD by inverting the quasi-Fourier transform of a certain class of hadronic position space matrix elements.
- One particular example are the loffe-time PDFs \mathfrak{M}_{R}, which are related to the physical PDF via the integral relation

$$
\mathfrak{M}_{R}\left(\nu, \mu^{2}\right) \equiv \int_{0}^{1} d x \cos (\nu x) q_{v}\left(x, \mu^{2}\right) .
$$

- Here it is assumed that the lattice computed matrix element is converted to the $\overline{M S}$ loffe-time PDF at a scale μ^{2}, using a perturbative kernel as discussed in Radyushkin (Phys.Rev. D98 (2018) no.1, 014019) , Zhang et al Phys.Rev. D97 (2018) no.7, 074508
- The task at hand is then to reconstruct the PDF $q_{v}\left(x, \mu^{2}\right)$ given a limited set of simulated data for $\mathfrak{M}_{R}\left(\nu, \mu^{2}\right)$.

Reconstruction

- Parton distribution functions (PDF) or distribution amplitudes (DA) may be defined in lattice QCD by inverting the quasi-Fourier transform of a certain class of hadronic position space matrix elements.
- One particular example are the loffe-time PDFs \mathfrak{M}_{R}, which are related to the physical PDF via the integral relation

$$
\mathfrak{M}_{R}\left(\nu, \mu^{2}\right) \equiv \int_{0}^{1} d x \cos (\nu x) q_{v}\left(x, \mu^{2}\right) .
$$

- Here it is assumed that the lattice computed matrix element is converted to the $\overline{M S}$ loffe-time PDF at a scale μ^{2}, using a perturbative kernel as discussed in Radyushkin (Phys.Rev. D98 (2018) no.1, 014019), Zhang et al Phys.Rev. D97 (2018) no.7, 074508
- The task at hand is then to reconstruct the PDF $q_{v}\left(x, \mu^{2}\right)$ given a limited set of simulated data for $\mathfrak{M}_{R}\left(\nu, \mu^{2}\right)$.

Reconstruction

- There exist two challenges to this endeavor, the first being that the integral in question does not extend over the full Brillouin zone, the second that in practice only a small number of points along ν can be computed.
- As we will discuss in more detail below, taken together these issues render the extraction highly ill-posed and we explore different regularization strategies on how to nevertheless reliably estimate the PDF from the data at hand
- Phenomenological investigations of PDFs have shown that their functional form may be reasonably well approximated by the following simple Ansatz

Reconstruction

- There exist two challenges to this endeavor, the first being that the integral in question does not extend over the full Brillouin zone, the second that in practice only a small number of points along ν can be computed.
- As we will discuss in more detail below, taken together these issues render the extraction highly ill-posed and we explore different regularization strategies on how to nevertheless reliably estimate the PDF from the data at hand.
- Phenomenological investigations of PDFs have shown that their functional form may be reasonably well approximated by the following simple Ansatz

Reconstruction

- There exist two challenges to this endeavor, the first being that the integral in question does not extend over the full Brillouin zone, the second that in practice only a small number of points along ν can be computed.
- As we will discuss in more detail below, taken together these issues render the extraction highly ill-posed and we explore different regularization strategies on how to nevertheless reliably estimate the PDF from the data at hand.
- Phenomenological investigations of PDFs have shown that their functional form may be reasonably well approximated by the following simple Ansatz

$$
p(x)=\frac{\Gamma(a+b+2)}{\Gamma(a+1) \Gamma(b+1)} x^{a}(1-x)^{b} .
$$

Naive Reconstruction

- Discretize the integral, employing the trapezoid integration rule
- $\Delta x=\frac{1}{N_{x}}, x_{k}=k \Delta x=\frac{k}{N_{x}}$
$\mathfrak{M}_{R}(\nu)=\frac{1}{2} \cos \left(\nu x_{0}\right) q_{v}\left(x_{0}\right)+\sum_{k=1}^{N_{x}-1} \delta x \cos \left(\nu x_{k}\right) q_{v}\left(x_{k}\right)+\frac{1}{2} \cos \left(\nu x_{N_{x}}\right) q_{v}\left(x_{N_{x}}\right)$
We can determine the unknown values of the function $q_{v}\left(x_{k}\right)$ by solving a simple linear system of equations.
- Defining $\mathfrak{m}_{k}=\mathfrak{M}_{R}\left(\nu_{k}\right)$ where ν_{k} are the values of the loffe time for which data is available and \mathfrak{q} be the vector with components the unknown values of $q_{v}\left(x_{k}\right)$ i.e. $\mathfrak{q}_{k}=q_{v}\left(x_{k}\right)$. Our problem is cast in a matrix equation $\mathfrak{m}=\mathfrak{C} \cdot \mathfrak{q}$,
- The conditioning of the problem is easily elucidated by considering the eigenvalues of the matrix \mathfrak{C}.

Naive Reconstruction

Eigenvalues λ_{k} of the kernel matrix for various discretization intervals.
Only for the case corresponding to a genuine discrete Fourier transform $\nu=[0,40 \pi]$ all eigenvalues remain of order unity. The realistic case of $\nu=[0,20]$ already shows a significant degradation of the spectrum.

Naive Reconstruction

Results for the direct inversion for different discretization intervals (left $\nu=[0,40 \pi]$, center $\nu=[0,100]$, right $\nu=[0,20]$). Note the different size of the relative errors needed, to obtain a well behaved result (left $\Delta \mathfrak{M}_{R} / \mathfrak{M}_{R}=10^{-2}$, center $\Delta \mathfrak{M}_{R} / \mathfrak{M}_{R}=10^{-5}$, right $\left.\Delta \mathfrak{M}_{R} / \mathfrak{M}_{R}=10^{-6}\right)$.

Advanced PDF Reconstructions

- A versatile approach is Bayesian inference Y. Burrie rand A. Rothoof Phys.Rev.Lett. 111 (2013)
- It acknowledges the fact that the inverse problem is ill-defined and a unique answer may only provided, once further information about the system has been made available.
- Formulated in terms of probabilities, one finds in the form of Bayes theorem that

It states that the so called posterior probability $P[q \mid \mathfrak{M}, I]$ for a test function q to be the correct x-space PDF, given our simulated loffe-time PDF \mathfrak{M} and additional prior information may be expressed in terms of three quantities.

Advanced PDF Reconstructions

- A versatile approach is Bayesian inference Y. Burrier and A. Rothoof Phys.Rev.Lett. 111 (2013)
- It acknowledges the fact that the inverse problem is ill-defined and a unique answer may only provided, once further information about the system has been made available.
- Formulated in terms of probabilities, one finds in the form of Bayes theorem that

It states that the so called posterior probability $P[q \mid \mathfrak{M}, I]$ for a test function q to be the correct x-space PDF, given our simulated Ioffe-time PDF \mathbb{M} and additional prior information may be expressed in terms of three quantities.

Advanced PDF Reconstructions

- A versatile approach is Bayesian inference Y. Burrier and A. Rothoof Phys.Rev.Lett. 111 (2013)
- It acknowledges the fact that the inverse problem is ill-defined and a unique answer may only provided, once further information about the system has been made available.
- Formulated in terms of probabilities, one finds in the form of Bayes theorem that

$$
P[q \mid \mathfrak{M}, I]=\frac{P[\mathfrak{M} \mid q, I] P[q \mid I]}{P[\mathfrak{M} \mid I]} .
$$

It states that the so called posterior probability $P[q \mid \mathfrak{M}, I]$ for a test function q to be the correct x-space PDF, given our simulated loffe-time PDF \mathfrak{M} and additional prior information may be expressed in terms of three quantities.

Bayesian Reconstruction

$$
P[q \mid \mathfrak{M}, I]=\frac{P[\mathfrak{M} \mid q, I] P[q \mid I]}{P[\mathfrak{M} \mid I]} .
$$

- The likelihood probability $P[\mathfrak{M} \mid q, I]$ denotes how probable it is to find the data \mathfrak{M} if q were the correct PDF.
- Finding the most probable q by maximizing the likelihood is nothing but a χ^{2} fit to the \mathfrak{M} data, which as we saw from the direct inversion is by itself ill-defined.
- The prior probability $P[q \mid I]$, which quantifies, how compatible our test function q is with respect to any prior information we have (e.g. appearance of non-analytic behavior of $q(x)$ at the boundaries of the x interval).
- $P[\mathfrak{M} \mid I]$, the so called evidence is a q independent normalization.

Bayesian Reconstruction

- For sampled data, due to the central limit theorem, the likelihood probability may be written as the quadratic distance functional $P[\mathfrak{M} \mid q, I]=\exp [-L]$ with $L=\frac{1}{2} \sum_{k, l}\left(\mathfrak{M}_{k}-\mathfrak{M}_{k}^{q}\right) C_{k l}^{-1}\left(\mathfrak{M}_{l}-\mathfrak{M}_{l}^{q}\right)$.
- \mathfrak{N}_{k}^{q} are the loffe-time data arising from inserting the test function q into the cosine Fourier trafo and $C_{k l}$ denotes the covariance matrix of the N_{m} measurements of simulation data \mathfrak{M}_{k}^{h}
- We then specify an appropriate prior probability $P[q \mid I]=\exp [\alpha S[I]]$
- Prior information enters in two ways here. On the one hand we deploy a particular functional form of the regularization functional

which may be obtained by requiring positive definiteness of the resulting q,
smoothness of q

Bayesian Reconstruction

- For sampled data, due to the central limit theorem, the likelihood probability may be written as the quadratic distance functional

$$
P[\mathfrak{M} \mid q, I]=\exp [-L] \text { with } L=\frac{1}{2} \sum_{k, l}\left(\mathfrak{M}_{k}-\mathfrak{M}_{k}^{q}\right) C_{k l}^{-1}\left(\mathfrak{M}_{l}-\mathfrak{M}_{l}^{q}\right) .
$$

- \mathfrak{M}_{k}^{q} are the loffe-time data arising from inserting the test function q into the cosine Fourier trafo and $C_{k l}$ denotes the covariance matrix of the N_{m} measurements of simulation data \mathfrak{M}_{k}^{h}.
- We then specify an appropriate prior probability $P[q \mid I]=\exp [\alpha S[I]]$
- Prior information enters in two ways here. On the one hand we deploy a particular functional form of the regularization functional
which may be obtained by requiring positive definiteness of the resulting q,

Bayesian Reconstruction

- For sampled data, due to the central limit theorem, the likelihood probability may be written as the quadratic distance functional

$$
P[\mathfrak{M} \mid q, I]=\exp [-L] \text { with } L=\frac{1}{2} \sum_{k, l}\left(\mathfrak{M}_{k}-\mathfrak{M}_{k}^{q}\right) C_{k l}^{-1}\left(\mathfrak{M}_{l}-\mathfrak{M}_{l}^{q}\right) .
$$

- \mathfrak{M}_{k}^{q} are the loffe-time data arising from inserting the test function q into the cosine Fourier trafo and $C_{k l}$ denotes the covariance matrix of the N_{m} measurements of simulation data \mathfrak{M}_{k}^{h}.
- We then specify an appropriate prior probability $P[q \mid I]=\exp [\alpha S[I]]$.
- Prior information enters in two ways here. On the one hand we deploy a particular functional form of the regularization functional
which may be obtained by requiring positive definiteness of the resulting q,

Bayesian Reconstruction

- For sampled data, due to the central limit theorem, the likelihood probability may be written as the quadratic distance functional

$$
P[\mathfrak{M} \mid q, I]=\exp [-L] \text { with } L=\frac{1}{2} \sum_{k, l}\left(\mathfrak{M}_{k}-\mathfrak{M}_{k}^{q}\right) C_{k l}^{-1}\left(\mathfrak{M}_{l}-\mathfrak{M}_{l}^{q}\right) .
$$

- \mathfrak{M}_{k}^{q} are the loffe-time data arising from inserting the test function q into the cosine Fourier trafo and $C_{k l}$ denotes the covariance matrix of the N_{m} measurements of simulation data \mathfrak{M}_{k}^{h}.
- We then specify an appropriate prior probability $P[q \mid I]=\exp [\alpha S[I]]$.
- Prior information enters in two ways here. On the one hand we deploy a particular functional form of the regularization functional

$$
S_{B R}[q, m]=\sum_{n} \Delta x_{n}\left(1-\frac{q_{n}}{m_{n}}+\log \left(\frac{q_{n}}{m_{n}}\right)\right)
$$

which may be obtained by requiring positive definiteness of the resulting q, smoothness of q.

Bayesian Reconstruction

- The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.

Bayesian Reconstruction

- The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.

Bayesian Reconstruction

- The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a
handle on systematics.

Bayesian Reconstruction

- The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.

Bayesian Reconstruction

- What happens in the case of non-guaranteed positive definiteness?
- We need to change the regulator!
- Often the quadratic regulator is used

- It is a comparatively strong regulator and usually imprints the form of the default model significantly onto the end result.
- Trying to keep the influence of the default model to a minimum, we extend the $B R$ prior to non-positive functions.

keeping the advantageous properties of the original $B R$ prior at the price of
having to introduce another default model related function h.

Bayesian Reconstruction

- What happens in the case of non-guaranteed positive definiteness?
- We need to change the regulator!
- Often the quadratic regulator is used

- It is a comparatively strong regulator and usually imprints the form of the default model significantly onto the end result.
- Trying to keep the influence of the default model to a minimum, we extend the $B R$ prior to non-positive functions.

keeping the advantageous properties of the original BR prior at the price of
having to introduce another default model related function h.

Bayesian Reconstruction

- What happens in the case of non-guaranteed positive definiteness?
- We need to change the regulator!
- Often the quadratic regulator is used

$$
S_{Q D R}[q, m]=\sum_{n} \Delta x_{n}\left(q_{n}-m_{n}\right)^{2}
$$

- It is a comparatively strong regulator and usually imprints the form of the default model significantly onto the end result.
- Trying to keep the influence of the default model to a minimum, we extend the $B R$ prior to non-positive functions.

keeping the advantageous properties of the original BR prior at the price of
having to introduce another default model related function h.

Bayesian Reconstruction

- What happens in the case of non-guaranteed positive definiteness?
- We need to change the regulator!
- Often the quadratic regulator is used

$$
S_{Q D R}[q, m]=\sum_{n} \Delta x_{n}\left(q_{n}-m_{n}\right)^{2}
$$

- It is a comparatively strong regulator and usually imprints the form of the default model significantly onto the end result.
- Trying to keep the influence of the default model to a minimum, we extend the $B R$ prior to non-positive functions.

keeping the advantageous properties of the original $B R$ prior at the price of
having to introduce another default model related function h.

Bayesian Reconstruction

- What happens in the case of non-guaranteed positive definiteness?
- We need to change the regulator!
- Often the quadratic regulator is used

$$
S_{Q D R}[q, m]=\sum_{n} \Delta x_{n}\left(q_{n}-m_{n}\right)^{2}
$$

- It is a comparatively strong regulator and usually imprints the form of the default model significantly onto the end result.
- Trying to keep the influence of the default model to a minimum, we extend the BR prior to non-positive functions.

$$
S_{B R g}[q, m]=\sum_{n} \Delta x_{n}\left(-\frac{\left|q_{n}-m_{n}\right|}{h_{n}}+\log \left(\frac{\left|q_{n}-m_{n}\right|}{h_{n}}-1\right)\right)
$$

keeping the advantageous properties of the original BR prior at the price of having to introduce another default model related function h.

Bayesian Reconstruction

- once L, S and m have been provided, the most probable PDF q, given simulation data and prior information is obtained by numerically finding the extremum of the posterior

$$
\left.\frac{\delta P[q \mid \mathfrak{M}, I]}{\delta q}\right|_{q=q_{\mathrm{Bayes}}}=0 .
$$

- It has been proven that if the regulator is strictly concave, as is the case for all the regulators discussed above, there only exists a single unique extremum in the space of functions q on a discrete ν interval With positive definiteness is imposed on the end result, the space of admissible solutions is significantly reduced. Regulators admitting also q functions with negative contributions have to distinguish between a multitude of oscillatory functions, which if integrated over, resemble a monotonous function to high precision. We will observe the emergence of ringing artefacts for the quadratic and generalized BR prior.

Bayesian Reconstruction

- once L, S and m have been provided, the most probable PDF q, given simulation data and prior information is obtained by numerically finding the extremum of the posterior

$$
\left.\frac{\delta P[q \mid \mathfrak{M}, I]}{\delta q}\right|_{q=q_{\mathrm{Bayes}}}=0
$$

- It has been proven that if the regulator is strictly concave, as is the case for all the regulators discussed above, there only exists a single unique extremum in the space of functions q on a discrete ν interval.
admissible solutions is significantly reduced. Regulators admitting also q functions with negative contributions have to distinguish between a multitude of oscillatory functions, which if integrated over, resemble a monotonous function to high precision. We will observe the emergence of ringing artefacts for the quadratic and generalized $B R$ prior.

Bayesian Reconstruction

- once L, S and m have been provided, the most probable PDF q, given simulation data and prior information is obtained by numerically finding the extremum of the posterior

$$
\left.\frac{\delta P[q \mid \mathfrak{M}, I]}{\delta q}\right|_{q=q_{\mathrm{Bayes}}}=0
$$

- It has been proven that if the regulator is strictly concave, as is the case for all the regulators discussed above, there only exists a single unique extremum in the space of functions q on a discrete ν interval.
- With positive definiteness is imposed on the end result, the space of admissible solutions is significantly reduced. Regulators admitting also q functions with negative contributions have to distinguish between a multitude of oscillatory functions, which if integrated over, resemble a monotonous function to high precision. We will observe the emergence of ringing artefacts for the quadratic and generalized BR prior.

Bayesian Reconstruction

x-space PDF's reconstructed using the BR method from $N_{\nu}=10$ loffe-time data points on the interval $\nu=[0,20]$ The plots in the left column denote the results for mock data based on a phenomenological PDF (NNPDF31_nnlo_as_0118), while the right column arises from a scenario where $q(0)$ is finite.

Bayesian Reconstruction

x-space PDF's reconstructed using a quadratic prior Bayesian (QDR) method from $N_{\nu}=10$ loffe-time data points on the interval $\nu=[0,20]$. The plots in the left column denote the results for mock data based on a phenomenological PDF (NNPDF31_nnlo_as_0118), while the right column arises from a scenario where $q(0)$ is finite.

Bayesian Reconstruction

x-space PDF's reconstructed using the generalized Bayesian reconstruction (BRg) method from $N_{\nu}=10$ loffe-time data points on the interval $\nu=[0,20]$. The plots in the left column denote the results for mock data based on a phenomenological PDF (NNPDF31_nnlo_as_0118), while the right column arises from a scenario where $q(0)$ is finite.

Bayesian Reconstruction

x-space PDF's reconstructed in a best case scenario ($\left.\nu=[0,100], N_{\nu}=100\right)$) using (left) the BR method (center) the quadratic prior and (right) the generalized BR method. The input data again is the one from a (top) $N_{\nu}=100$ discretized loffe-time realistic PDF, while the bottom row arises from a scenario where $q(0)$ is finite.

Backus-Gilbert Reconstruction

- The Backus-Gilbert (BG) method instead of imposing a smoothing condition on the resulting PDF $q(x)$ it imposes a minimization condition on the variance of the resulting function. σ. Backus and F. Gilbert. Geophysical Jourral of the Royal

Astronomical Society, 16:169205, (1968)

- Let us define a rescaled kernel and rescaled PDF $h(x)$

$$
K_{j}(x) \equiv \cos \left(\nu_{j} x\right) p(x) \text { and }, h(x) \equiv \frac{q_{v}(x)}{p(x)}
$$

- where $p(x)$ corresponds to an appropriately chosen function that makes the problem easier to solve.
- We wish to incorporate into $p(x)$ most of the non-trivial structure of $q(x)$ apriorily, such that $\mathrm{h}(\mathrm{x})$ is a slowly varying function of x and contains only the deviation of $q(x)$ from $p(x)$.

Backus-Gilbert Reconstruction

- Starting from the preconditioned expression with a rescaled PDF $h(x)$ that is only a slowly varying function of x our inverse problem becomes

$$
d_{j} \equiv \mathfrak{M}_{R}\left(\nu_{j}\right)=\int_{0}^{1} d x K_{j}(x) h(x) .
$$

- BG introduces a function $\Delta(x-\bar{x})=\sum_{j} q_{j}(\bar{x}) K_{j}(x)$, where $q_{j}(\bar{x})$ are unknown functions to be determined.
- It then estimates the unknown function as a linear combination of the data

$$
\hat{h}(\bar{x})=\sum_{j} q_{j}(\bar{x}) d_{j}, \text { or } \hat{q}_{v}(\bar{x})=\sum_{j} q_{j}(\bar{x}) d_{j} p(\bar{x})
$$

- If $\Delta(x-\bar{x})$ were to be a δ-function then $\hat{h}(\bar{x})=h(\bar{x})$. If $\Delta(x-\bar{x})$ approximates a δ-function with a width σ, then the smaller σ is the better the approximation of $\hat{h}(x)$ to $h(x)$.

Backus-Gilbert Reconstruction

- In other words if $\hat{h}_{\sigma}(x)$ is the approximation resulting from $\Delta(x)$ with a width σ then $\lim _{\sigma \rightarrow 0} \hat{h}_{\sigma}(x)=h(x)$.
- With this in mind BG minimizes the width σ given by

$$
\sigma=\int_{0}^{1} d x(x-\bar{x})^{2} \Delta(x-\bar{x})^{2}
$$

- Furthermore, if $\Delta(x)$ approximates a δ-function then one has to impose the constraint $\int_{0}^{1} d x \Delta(x-\bar{x})=1$. Using a Lagrange multiplier λ one can minimize the width and impose the constraint by minimizing

$$
\chi[q]=\int_{0}^{1} d x(x-\bar{x})^{2} \sum_{j, k} q_{j}(\bar{x}) K_{j}(x) K_{k}(x) q_{k}(\bar{x})+\lambda \int_{0}^{1} d x \sum_{j} K_{j}(x) q_{j}(\bar{x})
$$

- But let's see all this in practise ...

Backus-Gilbert reconstruction

Backus-Gilbert Reconstruction

Left: The NNPDF31_nnlo_as_0118 loffe time PDF data points used in this example, together with the dashed curve from which the data are chosen.
Right: The reconstructed Backus-Gilbert reconstructed PDF (red) together with the original PDF from the NNPDF31_nnlo_as_0118 dataset (blue) with $b=2$ and $\nu_{\max }=20$.

Backus-Gilbert Reconstruction

Left: The NNPDF31_nnlo_as_0118 loffe time PDF data points used in this example, together with the dashed curve from which the data are chosen.
Right: The reconstructed Backus-Gilbert reconstructed PDF (red) together with the original PDF from the NNPDF31_nnlo_as_0118 dataset (blue) with $b=2$ and $\nu_{\max }=30$.

Backus-Gilbert Reconstruction

Left: The NNPDF31_nnlo_as_0118 loffe time PDF data points used in this example, together with the dashed curve from which the data are chosen.
Right: The reconstructed Backus-Gilbert reconstructed PDF (red) together with the original PDF from the NNPDF31_nnlo_as_0118 dataset (blue) with $b=2$ and $\nu_{\max }=100$.

Neural Network Reconstruction

VERY PRELIMINARY RESULTS!!!

Left: Original data points (red) not visible. Red band representing errors on the original data points. Reconstructed data points (blue). Right: Original PDF (blue). Reconstructed PDF (red).

Neural Network Reconstruction

VERY PRELIMINARY RESULTS!!!

Left: Original data points (red) not visible. Red band representing errors on the original data points. Reconstructed data points (blue). Right: Original PDF (blue). Reconstructed PDF (red).

Conclusions-Outlook

- We studied in detail the problem of PDF reconstructions out of loffe time data
- An extremely ill-defined problem due to restricted range and number of ν data.
- We showed how methods of advanced reconstruction that have been successfully applied to different inverse problems in LQCD can also become handy for this task.
- We stressed the necessity of additional info in order to be able to provide a unique answer.
- These methods would be key ingredients of future studies.
- Many thanks for your attention!!!

Bayesian Reconstruction

- The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.

■ In the definition of $P[q \mid I]$ we introduced a further parameter α, a so called hyperparameter

- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.
- In the Maximum Entropy Method α is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e. we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values $P[\alpha]=1$

Bayesian Reconstruction

- The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data

■ We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.

- In the definition of $P[q \mid I]$ we introduced a further parameter α, a so called hyperparameter
- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.

■ In the Maximum Entropy Method α is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e. we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values $P[\alpha]=1$

Bayesian Reconstruction

- The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.
- In the definition of $P[q \mid I]$ we introduced a further parameter α, a so called hyperparameter
- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.
- In the Maximum Entropy Method α is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e. we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values $P[\alpha]=1$

Bayesian Reconstruction

- The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.
- In the definition of $P[q \mid I]$ we introduced a further parameter α, a so called hyperparameter
- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.

■ In the Maximum Entropy Method α is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e. we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values $P[\alpha]=1$

Bayesian Reconstruction

- The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.
- In the definition of $P[q \mid I]$ we introduced a further parameter α, a so called hyperparameter
- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.
- In the Maximum Entrony Method a is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e. we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values $P[a]=1$

Bayesian Reconstruction

- The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.

■ In the definition of $P[q \mid I]$ we introduced a further parameter α, a so called hyperparameter

- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.
- In the Maximum Entropy Method α is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values $P[\alpha]=1$

Bayesian Reconstruction

- The functional S depends on the function m, the default model.
- By construction constitutes its unique extremum.
- In the Bayesian logic m is the correct result for q in the absence of any data.
- We select m by a best fit of the loffe-PDF data and we will vary it to get a handle on systematics.
- In the definition of $P[q \mid I]$ we introduced a further parameter α, a so called hyperparameter
- Weighs the influence of simulation data and prior information. It has to be taken care of self-consistently.
- In the Maximum Entropy Method α is selected, such that the evidence has an extremum. In the BR method we deploy here, we marginalize the parameter α apriori, i.e. we integrate the posterior w.r.t the hyperparameter, assuming complete ignorance of its values $P[\alpha]=1$.

Bayesian Reconstruction

Best fit PDF (red solid line) from (left) realistic PDF data [mock scenario A] and (right) from a PDF Ansatz $q(x)=p\left(x, \frac{2}{10}, \frac{7}{10}\right)$ [mock scenario B]. The actual mock PDF in both cases is given as gray solid line. To determine the dependence of our results on the choice of default model, three further choices for m are plotted, two arising from varying the best fit parameters by factors of 2 , one being the constant default model $\mathrm{m}=1$.

Neural Network Reconstruction

- The ensemble average of data is obtained in two steps
- Starting from random $[w, b]$, minimize χ^{2} to find $[w, b]$.
- Repeat 10 times to find 10 different Neural Nets (replicas).
- For each Neural Net, the minimizer is re-run for each jackknife sample to obtain a jackknife estimate $q(x)$ for each replica.
- The central value of $q(x)$ is estimated as the average over jackknife samples and replicas.
- The error is estimated by combining the fluctuations over the jackknife sample and replicas.

Neural Network Reconstruction

$\chi^{2}=\sum_{k}\left(M\left(\nu_{k}\right)-\int_{0}^{1} \mathrm{~d} x q_{[\theta]}(x) \cos \left(\nu_{k} x\right)\right) \sigma_{k}^{2}\left(M\left(\nu_{k}\right)-\int_{0}^{1} \mathrm{~d} x q_{[\theta]}(x) \cos \left(\nu_{k} x\right)\right)$

$$
\min _{[\theta]}\left[\chi^{2}\right] \rightarrow[w, b]
$$

