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Our purpose 1/4
Relativistic Heavy Ion Collisions = QCD + External magnetic field

                             A. Tomiya

Lattice2018, MSU

Non-central heavy-ion collisions produce huge magnetic field,   
eB ~ 1018 Gauss (√eB ~ 442 MeV) 
(c.f. eBlab = 4.5x105 Gauss) 
→ It might affect to QCD phase structure
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Figure 10. The deconfinement transition temperature against the background magnetic field. The results
of our full lattice QCD simulations (white background) are complemented by the prediction (gray background)
based on the results corresponding to the B ! 1 limit and on the extrapolation of the light quark susceptibility
peak to high magnetic fields (see the text).

the case, note that by varying the anisotropy parameter , one can continuously deform the anisotropic
theory to usual pure gauge theory, as was demonstrated in Fig. 6. Furthermore, the isotropic pure
gauge theory can be thought of as QCD with infinitely heavy quarks and thus can be continuously
transformed into full QCD by increasing the inverse quark masses from zero to their physical values.
Thus, the transition we identified at B ! 1 is indeed the same deconfinement transition that occurs
at low magnetic fields.

Let us highlight that according to this discussion, having a decreasing deconfinement transition
temperature is actually natural to QCD. Furthermore, since the B ! 1 limit is independent of the
quark masses5, a similar reduction of T

c

by the magnetic field should also take place in QCD with
heavier-than-physical quarks. However, in the latter case this reduction most probably follows an
initial increase in the transition temperature, cf. Refs. [5, 35]. Indeed, recent lattice results employing
overlap fermions and pion masses of about 500 MeV indicate inverse catalysis to occur around the
transition temperature at the magnetic field eB ⇡ 1.3 GeV2 [8].

Finally, we note that magnetic fields well above the strength (5.1) are predicted to be generated
during the electroweak phase transition in the early universe [36]. If these fields remain strong enough
until the QCD epoch, the emerging first-order phase transition might have several exciting consequences.
Via supercooling, bubbles of the confined phase can be formed as the temperature drops below T

c

,
leading to large inhomogeneities, important for nucleosynthesis [37]. Collisions between the bubbles
can also lead to the emission of gravitational waves and, thus, leave an imprint on the primordial
gravitational spectrum [38]. An absence of such signals, in turn, would imply an upper limit for the
strength of the primordial magnetic fields.
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leading to large inhomogeneities, important for nucleosynthesis [37]. Collisions between the bubbles
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Our purpose 2/4
Why mπ = 320 & 80 MeV with HISQ in external magnetic fields?

                             A. Tomiya

Lattice2018, MSU
G. Endrodi 1504.08280

Stout staggered fermions at the physical point 
- Inverse magnetic catalysis at the critical temperature 
- Tc decreases along with external field eB 
- New critical endpoint for large eB is suggested by an effective model

G. S. Bali et al 1206.4205
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FIG. 2. Continuum extrapolated lattice results for the change of
the condensate as a function of B, at six different temperatures.

by fitting the results to a lattice spacing-dependent spline
function (for a similar fit in two dimensions see [53]). This
function is defined on a set of points and is parameterized
by two values at each such node, in the form ck + a2dk, to
reflect the a2-scaling of our action. The parameters ck and
dk are obtained by minimizing the corresponding �2. The
systematic error of the a ! 0 limit is determined by vary-
ing the node positions. We find that lattice discretization
errors become large at high magnetic fields due to satu-
ration of the lattice magnetic flux [44], therefore we only
include points with Nb/N 2

s < 0.1. In Fig. 1 we also show
the continuum limit of the difference �(⌃u + ⌃d)/2.

Next, we address the condensate at nonzero temperature,
carrying out a similar continuum extrapolation for �⌃ as
at T = 0, using three lattice spacings with Nt = 6, 8 and
10. The increase of the difference �⌃(B) is qualitatively
similar for zero and nonzero temperatures in �PT and in
the PNJL model (see below). In QCD, however, the sit-
uation is quite different: in Fig. 2 we plot the continuum
extrapolated lattice results for �(⌃u +⌃d)/2 as functions
of B for several temperatures, ranging from T = 0 up to
T = 176 MeV. Note that the transition temperature varies
from Tc(eB = 0) ⇡ 158 MeV down to Tc(0.9 GeV2) ⇡
138 MeV [44]. The increasing behavior of �⌃(B) at low
temperatures (T  130 MeV) corresponding to magnetic
catalysis continuously transforms into a hump-like struc-
ture in the crossover region (T = 148 MeV, 153 MeV)
and then on to a monotonously decreasing dependence
(T � 163 MeV). We remark that — although in the high
temperature limit the condensate and its dependence on B
are suppressed — at T & 190 MeV �⌃(B) again starts to
increase. Furthermore, we note that the strange condensate
�⌃s (with a definition similar to that in Eq. (4)) does not
exhibit this complex dependence on B and T but simply
increases with growing B for all temperatures. This shows
that the partly decreasing behavior near the crossover re-
gion only appears for quark masses below a certain thresh-

FIG. 3. Comparison of the continuum limit of the change of the
condensate to the �PT [13–15, 54] and the (P)NJL model [18, 55]
predictions.

old mthr, inbetween the physical light and strange quark
masses, mud < mthr < ms.

Comparison to effective theories/models.—In Fig. 3 we
compare our zero temperature QCD result for �(⌃u +
⌃d)/2 as a function of B to the �PT prediction [13–15, 54]
and to that of the PNJL model [18, 55], both at physical
pion mass. We see that the �PT prediction describes the
lattice results well up to eB = 0.1 GeV2, while the PNJL
model works quantitatively well up to eB = 0.3 GeV2.
Note that, since the Polyakov loop at zero temperature van-
ishes, in the limit T ! 0 the PNJL model becomes indis-
tinguishable from the NJL model with the same couplings.

In Fig. 4, the condensate Eq. (4) as a function of T is
compared to �PT and to the PNJL model for different mag-
netic fields. At B = 0 we use the continuum extrapolation
for the condensate presented in Ref. [50] (where lattices up
to Nt = 16 were employed), and complement this with the
differences �⌃(B) shown in Fig. 2. In addition to the con-
tinuum extrapolated lattice data we plot the �PT curves for
B = 0 [35] and for B > 0 [14, 15, 54], together with the
PNJL model predictions [18, 55]. The results indicate that
�PT is reliable for small temperatures and small magnetic
fields, eB . 0.1 GeV2, T . 100 MeV. (We remark that
the inclusion of the hadron resonance gas contribution to
the condensate in �PT [35] improves the agreement with
lattice results, as was shown at B = 0 in Ref. [50]. One
would expect a similar improvement at B > 0.) Since
the PNJL model condensate is calculated using a Polyakov
loop effective potential that was obtained from Nf = 2
lattice results [18], differences between the model and our
Nf = 1+1+1 results at T > 0 are expected to be large, as
both the transition temperature and the transition strength
(the slope of the condensate at Tc) strongly depend on the
number of flavors. To enable a comparison, we linearly
rescaled the temperature axis (only for the PNJL curves)
to match our lattice inflection point at B = 0. Never-
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gauge theory can be thought of as QCD with infinitely heavy quarks and thus can be continuously
transformed into full QCD by increasing the inverse quark masses from zero to their physical values.
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at low magnetic fields.

Let us highlight that according to this discussion, having a decreasing deconfinement transition
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can also lead to the emission of gravitational waves and, thus, leave an imprint on the primordial
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Why mπ = 320 & 80 MeV with HISQ in external magnetic fields?

                             A. Tomiya

Lattice2018, MSU

In our previous work, we found for mπ~300 MeV, 
- Normal magnetic catalysis for whole temperature 
- Tc increases along with external field eB (∝ Nb) 
- The Binder cumulant indicates 1st order phase transition
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Figure 2. Results with ma = 0.024. Top panel shows the chiral condensate for up quark and middle panel shows
its susceptibility. Bottom one is the binder ratio B4.

4 Summary and discussion

In this work, we investigate the phase structure of QCD with three degenerate flavor and a U(1)
external magnetic field for various masses using standard staggered fermions. We have observed a
tendency of strengthening of the phase transition in the light mass regime. Except for the heaviest
case, the critical temperature increases with the magnetic field instead of decrease.

There are several issues which must be addressed in our forthcoming study. Firstly, we need to
increase the statistics and improve resolution of � to obtain more accurate results especially the de-
termination of the order of phase transition from the Binder cumulant. Secondly, we find the increase
of �crit instead of decrease. That might come from cuto↵ e↵ects (lattice artifacts) of our setup. This
is because, for the N⌧ = 4 case, the pion mass is relatively heavy (around 290 MeV [15, 16]), even
in lighter quark mass regime. We have used parameters as in [9], which correspond to a first order
chiral phase transition regime. However, the existence of a first order phase transition regime for

A.T. et al  1711.02884
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Unimproved staggered fermions Nf =3
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Why mπ = 320 & 80 MeV with HISQ in external magnetic fields?

                             A. Tomiya

Lattice2018, MSU

We employ Highly Improved Staggered Quarks(HISQ): 
- To see cutoff effect and mass dependence on the catalysis 
- To see Tc(eB) behavior. Does it go up or down? 
- To find first order at large external field eB 

Figure 10. The deconfinement transition temperature against the background magnetic field. The results
of our full lattice QCD simulations (white background) are complemented by the prediction (gray background)
based on the results corresponding to the B ! 1 limit and on the extrapolation of the light quark susceptibility
peak to high magnetic fields (see the text).

the case, note that by varying the anisotropy parameter , one can continuously deform the anisotropic
theory to usual pure gauge theory, as was demonstrated in Fig. 6. Furthermore, the isotropic pure
gauge theory can be thought of as QCD with infinitely heavy quarks and thus can be continuously
transformed into full QCD by increasing the inverse quark masses from zero to their physical values.
Thus, the transition we identified at B ! 1 is indeed the same deconfinement transition that occurs
at low magnetic fields.

Let us highlight that according to this discussion, having a decreasing deconfinement transition
temperature is actually natural to QCD. Furthermore, since the B ! 1 limit is independent of the
quark masses5, a similar reduction of T

c

by the magnetic field should also take place in QCD with
heavier-than-physical quarks. However, in the latter case this reduction most probably follows an
initial increase in the transition temperature, cf. Refs. [5, 35]. Indeed, recent lattice results employing
overlap fermions and pion masses of about 500 MeV indicate inverse catalysis to occur around the
transition temperature at the magnetic field eB ⇡ 1.3 GeV2 [8].

Finally, we note that magnetic fields well above the strength (5.1) are predicted to be generated
during the electroweak phase transition in the early universe [36]. If these fields remain strong enough
until the QCD epoch, the emerging first-order phase transition might have several exciting consequences.
Via supercooling, bubbles of the confined phase can be formed as the temperature drops below T

c

,
leading to large inhomogeneities, important for nucleosynthesis [37]. Collisions between the bubbles
can also lead to the emission of gravitational waves and, thus, leave an imprint on the primordial
gravitational spectrum [38]. An absence of such signals, in turn, would imply an upper limit for the
strength of the primordial magnetic fields.
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FIG. 2. Continuum extrapolated lattice results for the change of
the condensate as a function of B, at six different temperatures.

by fitting the results to a lattice spacing-dependent spline
function (for a similar fit in two dimensions see [53]). This
function is defined on a set of points and is parameterized
by two values at each such node, in the form ck + a2dk, to
reflect the a2-scaling of our action. The parameters ck and
dk are obtained by minimizing the corresponding �2. The
systematic error of the a ! 0 limit is determined by vary-
ing the node positions. We find that lattice discretization
errors become large at high magnetic fields due to satu-
ration of the lattice magnetic flux [44], therefore we only
include points with Nb/N 2

s < 0.1. In Fig. 1 we also show
the continuum limit of the difference �(⌃u + ⌃d)/2.

Next, we address the condensate at nonzero temperature,
carrying out a similar continuum extrapolation for �⌃ as
at T = 0, using three lattice spacings with Nt = 6, 8 and
10. The increase of the difference �⌃(B) is qualitatively
similar for zero and nonzero temperatures in �PT and in
the PNJL model (see below). In QCD, however, the sit-
uation is quite different: in Fig. 2 we plot the continuum
extrapolated lattice results for �(⌃u +⌃d)/2 as functions
of B for several temperatures, ranging from T = 0 up to
T = 176 MeV. Note that the transition temperature varies
from Tc(eB = 0) ⇡ 158 MeV down to Tc(0.9 GeV2) ⇡
138 MeV [44]. The increasing behavior of �⌃(B) at low
temperatures (T  130 MeV) corresponding to magnetic
catalysis continuously transforms into a hump-like struc-
ture in the crossover region (T = 148 MeV, 153 MeV)
and then on to a monotonously decreasing dependence
(T � 163 MeV). We remark that — although in the high
temperature limit the condensate and its dependence on B
are suppressed — at T & 190 MeV �⌃(B) again starts to
increase. Furthermore, we note that the strange condensate
�⌃s (with a definition similar to that in Eq. (4)) does not
exhibit this complex dependence on B and T but simply
increases with growing B for all temperatures. This shows
that the partly decreasing behavior near the crossover re-
gion only appears for quark masses below a certain thresh-
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predictions.

old mthr, inbetween the physical light and strange quark
masses, mud < mthr < ms.

Comparison to effective theories/models.—In Fig. 3 we
compare our zero temperature QCD result for �(⌃u +
⌃d)/2 as a function of B to the �PT prediction [13–15, 54]
and to that of the PNJL model [18, 55], both at physical
pion mass. We see that the �PT prediction describes the
lattice results well up to eB = 0.1 GeV2, while the PNJL
model works quantitatively well up to eB = 0.3 GeV2.
Note that, since the Polyakov loop at zero temperature van-
ishes, in the limit T ! 0 the PNJL model becomes indis-
tinguishable from the NJL model with the same couplings.

In Fig. 4, the condensate Eq. (4) as a function of T is
compared to �PT and to the PNJL model for different mag-
netic fields. At B = 0 we use the continuum extrapolation
for the condensate presented in Ref. [50] (where lattices up
to Nt = 16 were employed), and complement this with the
differences �⌃(B) shown in Fig. 2. In addition to the con-
tinuum extrapolated lattice data we plot the �PT curves for
B = 0 [35] and for B > 0 [14, 15, 54], together with the
PNJL model predictions [18, 55]. The results indicate that
�PT is reliable for small temperatures and small magnetic
fields, eB . 0.1 GeV2, T . 100 MeV. (We remark that
the inclusion of the hadron resonance gas contribution to
the condensate in �PT [35] improves the agreement with
lattice results, as was shown at B = 0 in Ref. [50]. One
would expect a similar improvement at B > 0.) Since
the PNJL model condensate is calculated using a Polyakov
loop effective potential that was obtained from Nf = 2
lattice results [18], differences between the model and our
Nf = 1+1+1 results at T > 0 are expected to be large, as
both the transition temperature and the transition strength
(the slope of the condensate at Tc) strongly depend on the
number of flavors. To enable a comparison, we linearly
rescaled the temperature axis (only for the PNJL curves)
to match our lattice inflection point at B = 0. Never-

Figure 10. The deconfinement transition temperature against the background magnetic field. The results
of our full lattice QCD simulations (white background) are complemented by the prediction (gray background)
based on the results corresponding to the B ! 1 limit and on the extrapolation of the light quark susceptibility
peak to high magnetic fields (see the text).

the case, note that by varying the anisotropy parameter , one can continuously deform the anisotropic
theory to usual pure gauge theory, as was demonstrated in Fig. 6. Furthermore, the isotropic pure
gauge theory can be thought of as QCD with infinitely heavy quarks and thus can be continuously
transformed into full QCD by increasing the inverse quark masses from zero to their physical values.
Thus, the transition we identified at B ! 1 is indeed the same deconfinement transition that occurs
at low magnetic fields.

Let us highlight that according to this discussion, having a decreasing deconfinement transition
temperature is actually natural to QCD. Furthermore, since the B ! 1 limit is independent of the
quark masses5, a similar reduction of T

c

by the magnetic field should also take place in QCD with
heavier-than-physical quarks. However, in the latter case this reduction most probably follows an
initial increase in the transition temperature, cf. Refs. [5, 35]. Indeed, recent lattice results employing
overlap fermions and pion masses of about 500 MeV indicate inverse catalysis to occur around the
transition temperature at the magnetic field eB ⇡ 1.3 GeV2 [8].

Finally, we note that magnetic fields well above the strength (5.1) are predicted to be generated
during the electroweak phase transition in the early universe [36]. If these fields remain strong enough
until the QCD epoch, the emerging first-order phase transition might have several exciting consequences.
Via supercooling, bubbles of the confined phase can be formed as the temperature drops below T

c

,
leading to large inhomogeneities, important for nucleosynthesis [37]. Collisions between the bubbles
can also lead to the emission of gravitational waves and, thus, leave an imprint on the primordial
gravitational spectrum [38]. An absence of such signals, in turn, would imply an upper limit for the
strength of the primordial magnetic fields.
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Figure 2. Results with ma = 0.024. Top panel shows the chiral condensate for up quark and middle panel shows
its susceptibility. Bottom one is the binder ratio B4.

4 Summary and discussion

In this work, we investigate the phase structure of QCD with three degenerate flavor and a U(1)
external magnetic field for various masses using standard staggered fermions. We have observed a
tendency of strengthening of the phase transition in the light mass regime. Except for the heaviest
case, the critical temperature increases with the magnetic field instead of decrease.

There are several issues which must be addressed in our forthcoming study. Firstly, we need to
increase the statistics and improve resolution of � to obtain more accurate results especially the de-
termination of the order of phase transition from the Binder cumulant. Secondly, we find the increase
of �crit instead of decrease. That might come from cuto↵ e↵ects (lattice artifacts) of our setup. This
is because, for the N⌧ = 4 case, the pion mass is relatively heavy (around 290 MeV [15, 16]), even
in lighter quark mass regime. We have used parameters as in [9], which correspond to a first order
chiral phase transition regime. However, the existence of a first order phase transition regime for
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                             A. Tomiya

Lattice2018, MSU

Crossover

1stms

mud

This work: HISQ 
mπ =  80 & 320 MeV

Heavy mass regime 
Stout staggered 

mπ = 340, 440, 664 MeV

Physical point 
Stout staggered

1st

Our previous work 
Standard staggered 

mπ > 300 MeV

eB A.T. et al  1711.02884 
G. Endrodi 1504.08280 
M. D’Elia et al XQCD2018 
and references therein

†There are also Wilson & overlap works

F.R. Brown, et al PRL65, 2491 (1990)
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Terminology
External magnetic field (inversely) catalyzes the chiral condensate

                             A. Tomiya

Lattice2018, MSU

eB

h ̄ i

(Normal) 
Magnetic Catalysis

eB

h ̄ i

Inverse 
Magnetic Catalysis
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Our setup
mπ = 320 & 80 MeV with HISQ

                             A. Tomiya

Lattice2018, MSU

3 degenerate flavors with HISQ (RHMC) 
mπ = 320 MeV (~ lightest in unimproved case) 
         & 80 MeV (near to SU(3) chiral limit)

3 degenerate flavors 
Unimproved staggered quarks with RHMC 
mπ > 300 MeV

The Dirac spectrum and topological 
susceptibility using the stochastic estimator.

Previous

This work

[L. Giusti et al, 2009. G. Cossu et al 2016. P. d. Forcrand et al 2018.]
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Our setup
mπ = 320 & 80 MeV with HISQ

                             A. Tomiya

Lattice2018, MSU

Nf = 3 QCD with HISQ (mπ = 320 and 80 MeV) 
Tree level Symanzik gauge action 
Nσ3xNτ = 163 x6 (a ~ 0.27 fm) 
The number of configurations ~ O(1000) 
Fermilab and CCNU GPU machines

Nb(Nx=16) 0 8 16 32 56

√eB (MeV) 0 330 460 660 870

m 320 MeV 80 MeV 80 MeV
Nx=Ny 16 16 24

7 1.7 2.6 (Not showed)

Nb / a2eB : # of magnetic flux

m⇡L



mπ = 320 MeV
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Results with mπ = 320 MeV

Lattice2018, MSU

Susceptibility for heavier regime(~ lightest mass in unimproved staggered)

                             A. Tomiya

Tc decreases along with Nb (∝eB)

Consistent with results with physical point
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Results with mπ = 320 MeV

Lattice2018, MSU

Binder cumulant for Heavier regime(~ lightest mass in unimproved staggered)

                             A. Tomiya

No indication of 1st order, different from unimproved staggered results
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Results with mπ = 320 MeV

Lattice2018, MSU

Chiral condensate for Heavier regime(~ lightest mass in unimproved staggered)

                             A. Tomiya

mπ = 320 MeV data near Tc shows inverse magnetic catalysis 
-> Unimproved staggered results are probably artifacts

hūui

Nb / a2eB
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Results with mπ = 320 MeV

Lattice2018, MSU

                             A. Tomiya

Relative increase of the chiral condensate

Decomposition of relative increase of the chiral condensate

We can see sea and valence effects on 
normal/inverse magnetic catalysis

[M. D’Elia et al 1103.2080]

rfull(B) = rsea(B) + rval(B) +O(B4)

r(B) =
h ̄ i(B)� h ̄ i(0)

h ̄ i(0)

eB only in 
sea quarks

eB only in 
valence quarks
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Results with mπ = 320 MeV

Lattice2018, MSU

Heavier regime: Consistent with previous results at physical points

                             A. Tomiya

Using stochastic estimator [L. Giusti et al, 2009. G. Cossu et al 2016. P. d. Forcrand et al 2018.]

T < Tc T > Tc

(Normal) Magnetic Catalysis Inverse Magnetic Catalysis

Sea quarks drive inverse catalysis 
Similar to previous results at the physical point

r(B) =
h ̄ i(B)� h ̄ i(0)

h ̄ i(0)

Nb / a2eB
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Results with mπ = 320 MeV

Lattice2018, MSU

Dirac spectrum: sea quarks drive inverse catalysis

                             A. Tomiya

Figure 5: The full spectral density around zero modes for different magnetic fields.

6

Figure 5: The full spectral density around zero modes for different magnetic fields.

6

Figure 5: The full spectral density around zero modes for different magnetic fields.

6

Figure 14: The sea spectral density around zero modes for different magnetic fields.

15

Figure 14: The sea spectral density around zero modes for different magnetic fields.

15

Figure 23: The valence spectral density around zero modes for different magnetic fields.

24

Figure 23: The valence spectral density around zero modes for different magnetic fields.

24

Nb=0

Nb=16

Nb=56

Full     on sea     on valence

Valence quarks only contribute to normal catalysis

Suppressed 
low-laying modes

Increase 
low-laying modes

Suppressed 
low-laying modes

same with Nb=0 same with Nb=0

eB eB
� = 6(T & Tc)

Using stochastic estimator [L. Giusti et al, 2009. G. Cossu et al 2016. P. d. Forcrand et al 2018.]
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Results with mπ = 320 MeV

Lattice2018, MSU

Topological susceptibility shows similar tendency to the chiral condensate

                             A. Tomiya

�
top

Similar tendency to the chiral condensate

for the number of eigenvalues in arbitral range [s, t]. Ncnf is the number of the configurations.

Then we can reconstruct ρ(λ).

ρ̂(λ; δ) =
1

2V̂

n[s, t]

aδ
, (33)

where aλ =
√
s/(1− s), a(λ+ δ) =

√
t/(1− t) and V̂ = V/a4. a3ρ(λ; δ) = ρ̂(λ; δ).

For calculation of the rs(B), we use spectral representation of the chiral condensate,

〈
ψψ

〉s
(B) ≈

〈
ψψ

〉s
(B)app =

∫ ∞

0

dλ
2mρs(λ;B)

λ2 +m2
. (34)

up to a finite volume (zero modes) correction ⟨|Q|⟩ /(2mV ).

χtop(B) = m2

∫ ∞

0

dλ
4m2ρsea(λ;B)

(λ2 +m2)2
. (35)

〈
ψψ

〉
=

∫ ∞

0

dλ
2mρ(λ)

λ2 +m2
. (36)

χtop = m2

∫ ∞

0

dλ
4m2ρ(λ)

(λ2 +m2)2
. (37)

We calculate the Binder cumulant [10] for the chiral condensate as a function of β,

B4(β) =

〈
(δψψ)4

〉
〈
(δψψ)2

〉2 , (38)

where δψψ = ψψ −
〈
ψψ

〉
. The minimum of Binder cumulant B4 indicates order of phase

transition: B4 = 3 corresponds to crossover, B4 ∼ 1.6 for the second order phase transition

with the Ising Z2 universality class, B4 = 1 for the first order phase transition [11]. However,

it contains forth order of a operator thus it is difficult to obtain accurate result comparing

to the susceptibility or the condensate itself.

10

Using stochastic estimator [L. Giusti et al, 2009. G. Cossu et al 2016. P. d. Forcrand et al 2018.]



mπ = 80 MeV
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Results with mπ = 80 MeV

Lattice2018, MSU

Susceptibility in light pion mass regime (near the SU(3) chiral limit)

                             A. Tomiya

Tc goes up and down along with Nb?? 
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Results with mπ = 80 MeV

Lattice2018, MSU

Susceptibility in light pion mass regime (near the SU(3) chiral limit)

                             A. Tomiya

Tc goes up and down along with Nb?? 
-> Mpi = 80 MeV with Nx=16 is affected by finite size effects.

�cr

Nb / a2eB
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Results with mπ = 80 MeV

Lattice2018, MSU

Lighter regime for Nx = 16 is affected by finite volume effects

                             A. Tomiya

This mass is strongly affected by finite volume effects: 
MπL = 1.7 < 4  
Especially, high temperature and large Nb is serious.

One directional 
drift

hūui
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Results with mπ = 80 MeV

Lattice2018, MSU

Binder cumulant in light pion mass regime (near the SU(3) chiral limit)

                             A. Tomiya
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No signal for 1st order phase transition.

crossover

1st order
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Summary: QCD phase trs. with magnetic field

Lattice2018, MSU

No 1st order is found for mπ = 320 and 80 MeV (√eB < 870 MeV)

                             A. Tomiya

1. mπ = 320 MeV shows crossover, Tc(eB) decreases. 

1. 1st order for standard staggered fermions are probably an artifact 

2. Dirac spectrum for sea part are consistent with inverse magnetic catalysis 

3. Qualitatively similar to the physical point results by stout staggered fermions 

2. mπ = 80 MeV shows crossover (√eB < 870 MeV) 

1. Tc goes up and down along with Nb, but Nx=16 lattice affected by finite volume 
effect, especially high temperature and large Nb. (highly suspected) 

2. Except for Tc(eB) behavior, mπ = 80 MeV system shows qualitatively same behavior 
to 320 MeV (not showed in this talk) 

3. No indication of the first order 

3. In both cases, topological susceptivity behave similar to the chiral condensate.  
(mπ = 80 MeV is not showed)

1. To improve the analyses for mπ = 80 MeV, simulations with  
 larger volumes are needed.  Analyses on Nx=24 is ongoing.

Summary of HISQ with magnetic field

Outlook





Backup
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HISQ with the magnetic field
HISQ = Highly improved staggered quarks

                             A. Tomiya

Lattice2018, MSU

Lv 1. ReU Lv 2.Thin

Fat-7 Re-unitrization Fat-7(+Lepage)

Ex. mag.(z)

y

strength of the phase transition becomes stronger with larger magnetic field [4]. Afterwards by using
stout staggered fermions with a physical pion mass a totally di↵erent result was found. There the
inverse catalysis and the decreasing of Tc with B was observed [5, 6]. In the simulation with standard
staggered fermions the root-mean-square pion mass is much larger than the physical pion mass and
this could be a cause of the observation of magnetic catalysis [7].

In this proceedings, we intend to study the influence of the value of quark mass to the behavior of
Tc as a function of the magnetic field B, namely we investigate �cri(B,m) with Nf = 3 QCD, which
corresponds to a diagonal line for the extended Columbia plot (Right panel in Fig. 1). As a starting
point of this project we will use the standard staggered fermions in our simulation. The numerical
setups will be presented in the next section.

1st

1st

Nf=3

Cross over

Physical pt

ms

mud

←1st?
2nd?

Tri. Crit.

1st

1st
Nf=3

Cross over

ms

mud
eB

Figure 1. Conventional Colombia plot [8] (left) and the one with the external magnetic field (right).

2 Setup

Here we introduce our numerical setup. We employ mass degenerated three flavor standard staggered
fermions, amud = ams ⌘ amq, with the plaquette gauge action. Parameters for light mass regime are
taken from [9], with which QCD has a first order phase transition at vanishing magnetic field B = 0.
This simulation is performed with forth rooting technique as in previous studies and rational hybrid
Monte-Carlo algorithm.

The external U(1) magnetic field is implemented in the following way. The magnetic field only
couples to quarks thus implementation is done just by changing SU(3) links Uµ to uµUµ. Here uµ
represents U(1) links which contribute to the Dirac operator. Finiteness of lattice size introduces an
infrared cuto↵ to the U(1) field [10]. Let us denote the lattice size (Nx, Ny, Nz, Nt) and coordinate
as nµ = 0, · · · ,Nµ � 1 (µ = x, y, z, t). The external magnetic field in z direction ~B = (0, 0, B) is
described by the link variable uµ(n) of the U(1) field and uµ(n) is expressed as follows,

ux(nx, ny, nz, nt) =

8>><
>>:

exp[�iqBNxny] (nx = Nx � 1)
1 (Otherwise)

uy(nx, ny, nz, nt) = exp[iqBnx], (1)
uz(nx, ny, nz, nt) = ut(nx, ny, nz, nt) = 1.

DKS[        ] + DNaik[        ]
Lv 2. ReU

u u
Multiplying u(1) links 
after the smearing

x

DHISQ[U] =  DKS[      ] + DNaik[      ]
Lv 2. ReU
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Topological susceptibility

Lattice2018, MSU

Previous works by HISQ

                             A. Tomiya

Peter Petreczky, Hans-Peter Schadler and Sayantan Sharma	

1606.03145

3. Results

3.1. Topological susceptibility from gradient flow

Our results for the topological susceptibility χt are summarized in Fig. 3.
In most of our plots we rescale the temperature axis by the chiral crossover
transition temperature Tc = 154 MeV, unless stated otherwise. The cut-off
effects are reflected in the strong Nτ dependence of the data up to the highest
temperatures considered. At low temperatures, large cutoff effects in χt can be
understood in terms of breaking of the taste symmetry of staggered fermions
and can be quantified within the staggered chiral perturbation theory [3, 46].
However taste breaking effects are expected to be milder at higher temperatures
since the lattice spacing is finer. Our results indicate that above Tc, cutoff
effects depend dominantly on aT = 1/Nτ rather than ∼ aΛQCD. In fact, the
cutoff effects in χt is much stronger than for any other thermodynamic quantity
calculated so far with HISQ action [37, 47, 48]. It is also evident from our data
that χt has an interesting temperature dependence. If indeed χt is characterized

by a power law fall off such that χ1/4
t = AT−b, then a fit to our data restricted

to intervals [165 : 220] MeV and [220 : 600] MeV resulted in b ∼ 0.9-1.2 and
b ∼ 1.35-1.6 respectively. In fact, it turns out that it is impossible to obtain
an acceptable fit to the data with a single exponent b in the entire temperature
range. This led us to model the variation of the exponent by giving it two
different values for temperatures T > 1.5Tc and T < 1.5Tc. This is also taken
into account when performing continuum extrapolation. We note that at leading
order, the exponent calculated within DIGA for Nf = 3 corresponds to b =
γ/4 = 2. Higher order corrections would effectively reduce the value of b.

 10

 20

 40

 60
 80

 100
 140
 180

 1  1.5  2  3  3.5
T/Tc

χt
1/4 [MeV] Nτ=6

Nτ=8
Nτ=10
Nτ=12

cont

 20

 40

 60

 80

 100

 120

 1  1.5  2  2.5  3  3.5
T/Tc

χt
1/4 [MeV] HISQ, a=0.082 fm

HISQ, a=0.060 fm
TM, a=0.060fm

stout, a=0.057fm
DWF, a=1/(8T)

Figure 3: The temperature dependence of χt in QCD for HISQ action on lattices with different
Nτ (left) and χt for HISQ action at two lattice spacings compared with recent results using
different fermion actions [19, 36, 49] (right). In the left panel, we also show the continuum
result for χt disucssed in section 4 and open symbols represent the data points that have not
been used in the continuum extrapolation.

Let us compare our results with those obtained in QCD using different
fermion discretizations [19, 36, 49]. We do not expect the values of χt for differ-
ent choice of fermion discretizations to agree with each other at non-vanishing
lattice spacings. However such comparisons provide insights on the nature and

8
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Comparison to conventional method

Lattice2018, MSU

The projector method gives consistent results to the chiral condensate

                             A. Tomiya

We have used stochastic estimator for the Dirac 
spectrum and calculate the chiral condensate

for the number of eigenvalues in arbitral range [s, t]. Ncnf is the number of the configurations.

Then we can reconstruct ρ(λ).

ρ̂(λ; δ) =
1

2V̂

n[s, t]

aδ
, (33)

where aλ =
√
s/(1− s), a(λ+ δ) =

√
t/(1− t) and V̂ = V/a4. a3ρ(λ; δ) = ρ̂(λ; δ).

For calculation of the rs(B), we use spectral representation of the chiral condensate,
〈
ψψ

〉s
(B) ≈

〈
ψψ

〉s
(B)app =

∫ ∞

0

dλ
2mρs(λ;B)

λ2 +m2
. (34)

up to a finite volume (zero modes) correction ⟨|Q|⟩ /(2mV ).

χtop(B) = m2

∫ ∞

0

dλ
4m2ρsea(λ;B)

(λ2 +m2)2
. (35)

〈
ψψ

〉
=

∫ ∞

0

dλ
2mρ(λ)

λ2 +m2
. (36)

χtop = m2

∫ ∞

0

dλ
4m2ρ(λ)

(λ2 +m2)2
. (37)

|
〈
ψψ

〉
| =

∫ ∞

0

dλ
2mρ(λ)

λ2 +m2
(38)

=
1

V

〈
Tr

[ 1

D +m

]〉
≈ 1

NrNconf

Nconf∑

c

Nr∑

r

ξ†r
1

D[Uc] +m
ξr (39)

We calculate the Binder cumulant [10] for the chiral condensate as a function of β,

B4(β) =

〈
(δψψ)4

〉
〈
(δψψ)2

〉2 , (40)

where δψψ = ψψ −
〈
ψψ

〉
. The minimum of Binder cumulant B4 indicates order of phase

transition: B4 = 3 corresponds to crossover, B4 ∼ 1.6 for the second order phase transition

with the Ising Z2 universality class, B4 = 1 for the first order phase transition [11]. However,

it contains forth order of a operator thus it is difficult to obtain accurate result comparing

to the susceptibility or the condensate itself.

det(D +m)(U,B) = det(D +m) + c(eB̂)2 +O(B̂4) (41)

(D +m)−1(U,B) = (D +m)−1(U) + c′(eB̂)2 +O(B̂4) (42)

10

Using stochastic estimator [L. Giusti et al, 2009. G. Cossu et al 2016. P. d. Forcrand et al 2018.]



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50  60

up
 c

on
de

ns
at

e

Nb

`= 5.70
`= 5.77
`= 5.80
`= 5.85
`= 5.90
`= 5.95
`= 6.00
`= 6.05

0

29

Results with mπ = 80 MeV

Lattice2018, MSU

Lighter regime

                             A. Tomiya

It shows inverse mag. catalysis

hūui

Nb

Using stochastic estimator [L. Giusti et al, 2009. G. Cossu et al 2016. P. d. Forcrand et al 2018.]
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Results with mπ = 80 MeV

Lattice2018, MSU

Lighter regime

                             A. Tomiya

17 20

T < Tc T ~ Tc

(Normal) Magnetic Catalysis Inverse Magnetic Catalysis

Sea quarks drive inverse catalysis 
Similar to previous results at the physical point

Using stochastic estimator [L. Giusti et al, 2009. G. Cossu et al 2016. P. d. Forcrand et al 2018.]
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Results with mpi = 320 MeV

Lattice2018, MSU

                             A. Tomiya

External magnetic field come into two slots,

to momentum in the Brillouin zone for crystals. In our simulation, magnetic field is treated

as the external field and,

DHISQ[X,W ] → DHISQ[uX, uW ] ≡ Dup/down[U ;B], (7)

where Dup/down means, insert q = 2/3 for up type quarks and q = −1/3 for down type

quarks.

C. Observables

We measure the chiral condensate and its susceptibility.

〈
ψψ

〉full,f
(B) =

∫
DUP [U ;B] Tr

[
1

Df [U ;B] +m

]
, (8)

〈
ψψ

〉val,f
(B) =

∫
DUP [U ; 0] Tr

[
1

Df [U ;B] +m

]
, (9)

〈
ψψ

〉sea,f
(B) =

∫
DUP [U ;B] Tr

[
1

Df [U ; 0] +m

]
, (10)

and

P [U ;B] =
1

Z(B)
e−Sg [U ]Det [Dup[U ;B] +m]1/4Det [Ddown[U ;B] +m]1/2 (11)

where f takes up or down.
〈
ψψ

〉s
(B) =

(〈
ψψ

〉s,up
(B) +

〈
ψψ

〉s,down
(B)

)
/2 for s =

full, val, sea. We use relative increases of the chiral condensate [Massimo]

rs(B) =

〈
ψψ

〉s
app (B)−

〈
ψψ

〉s
app (0)〈

ψψ
〉s

app (0)
(12)

where
〈
ψψ

〉s
app (B) is defined in below. Note that rfull(B) = rval(B) + rsea(B) + O(B4)

[Massimo].

We measure the Dirac spectrum ρs(λ;B) =
(
ρs,up(λ;B) + ρs,down(λ;B)

)
/2, by utilizing

noisy estimator of the Dirac spectrum [Guisti-Luscher/JLQCD/Benjamin]. The staggered

type Dirac operators have anti-hermiticity,

D† = −D (13)

so

Dψj(x) = iλjψj(x) (14)

5
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)
/2, by utilizing
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D† = −D (13)

so

Dψj(x) = iλjψj(x) (14)

5

Effects from valence and sea Dirac operators

where

f = up, down
[M. D’Elia et al 1103.2080]
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QCD phase diagram with magnetic field
Works with external magnetic field (improved KS types)

                             A. Tomiya

Lattice2018, MSU

Phase diagram @ mπ= Physical mass

T
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QCD phase diagram with magnetic field
Works with external magnetic field (improved KS types)

                             A. Tomiya

Lattice2018, MSU

eB

T

Phase diagram @ mπ= Physical mass
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HISQ with the magnetic field
HISQ = Hight improved staggered quarks

                             A. Tomiya

Lattice2018, MSU

HISQ = KS term with 2 level smearing + Naik term with reunitarized links

Lv 1. ReU Lv 2.Thin

Fat-7 Re-unitrization Fat-7(+Lepage)
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Quantization of the magnetic field
Magnetic flux and upper limit.

                             A. Tomiya

Lattice2018, MSU

Nx = Ny = 16 case, Nb = 64 is the maximum

eB =
2⇡N

b

N
x

N
y

a�2

0  N
b

<
N

x

N
y

4

Ex. mag.(z)

x
y

External magnetic field for z-dir.

strength of the phase transition becomes stronger with larger magnetic field [4]. Afterwards by using
stout staggered fermions with a physical pion mass a totally di↵erent result was found. There the
inverse catalysis and the decreasing of Tc with B was observed [5, 6]. In the simulation with standard
staggered fermions the root-mean-square pion mass is much larger than the physical pion mass and
this could be a cause of the observation of magnetic catalysis [7].

In this proceedings, we intend to study the influence of the value of quark mass to the behavior of
Tc as a function of the magnetic field B, namely we investigate �cri(B,m) with Nf = 3 QCD, which
corresponds to a diagonal line for the extended Columbia plot (Right panel in Fig. 1). As a starting
point of this project we will use the standard staggered fermions in our simulation. The numerical
setups will be presented in the next section.

1st

1st

Nf=3

Cross over

Physical pt

ms

mud

←1st?
2nd?

Tri. Crit.

1st

1st
Nf=3

Cross over

ms

mud
eB

Figure 1. Conventional Colombia plot [8] (left) and the one with the external magnetic field (right).

2 Setup

Here we introduce our numerical setup. We employ mass degenerated three flavor standard staggered
fermions, amud = ams ⌘ amq, with the plaquette gauge action. Parameters for light mass regime are
taken from [9], with which QCD has a first order phase transition at vanishing magnetic field B = 0.
This simulation is performed with forth rooting technique as in previous studies and rational hybrid
Monte-Carlo algorithm.

The external U(1) magnetic field is implemented in the following way. The magnetic field only
couples to quarks thus implementation is done just by changing SU(3) links Uµ to uµUµ. Here uµ
represents U(1) links which contribute to the Dirac operator. Finiteness of lattice size introduces an
infrared cuto↵ to the U(1) field [10]. Let us denote the lattice size (Nx, Ny, Nz, Nt) and coordinate
as nµ = 0, · · · ,Nµ � 1 (µ = x, y, z, t). The external magnetic field in z direction ~B = (0, 0, B) is
described by the link variable uµ(n) of the U(1) field and uµ(n) is expressed as follows,

ux(nx, ny, nz, nt) =

8>><
>>:

exp[�iqBNxny] (nx = Nx � 1)
1 (Otherwise)

uy(nx, ny, nz, nt) = exp[iqBnx], (1)
uz(nx, ny, nz, nt) = ut(nx, ny, nz, nt) = 1.

(By a periodicity)
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Results with mpi = 320 MeV

Lattice2018, MSU

Chiral condensate for heavier regime (~ standard setup)

                             A. Tomiya
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Results with mpi = 320 MeV

Lattice2018, MSU

Dirac spectrum sea quarks drive inverse catalysis

                             A. Tomiya

Using stochastic estimator [L. Giusti et al, 2009. G. Cossu et al 2016. P. d. Forcrand et al 2018.]

Figure 5: The full spectral density around zero modes for different magnetic fields.
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Figure 14: The sea spectral density around zero modes for different magnetic fields.
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Figure 23: The valence spectral density around zero modes for different magnetic fields.
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Figure 23: The valence spectral density around zero modes for different magnetic fields.
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Figure 23: The valence spectral density around zero modes for different magnetic fields.
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Results with mpi = 80 MeV

Lattice2018, MSU

Chiral cond. in light pion mass regime (near the SU(3) chiral limit)

                             A. Tomiya
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Results with mpi = 80 MeV

Lattice2018, MSU

Dirac spectrum for lighter regime

                             A. Tomiya

Using stochastic estimator [L. Giusti et al, 2009. G. Cossu et al 2016. P. d. Forcrand et al 2018.]
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Results with mpi = 80 MeV

Lattice2018, MSU

Topological susceptibility for lighter regime

                             A. Tomiya
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HISQ with the magnetic field
HISQ = Hight improved staggered quarks

                             A. Tomiya

Lattice2018, MSU

HISQ = KS term with 2 level smearing + Naik term with reunitarized links

Lv 1.
 = 

ReU
 = 

Lv 1.

f(   )
Lv 2.

 =  +  +  + 

 +  +  + 

+ L. t.

DHISQ[U] =  DKS[      ] + DNaik[      ]
Lv 2. ReU
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Related works
Mpi ~ 300 MeV

                             A. Tomiya

Lattice2018, MSU

- Tc goes up 
- normal catalysis 
- First order??

Our last year’s one
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Related works
Mpi = physical, F. Bruckman et al, arXiv: 1111.4956, 1303.3972

                             A. Tomiya

Lattice2018, MSU

- Tc goes down 
- Inverse magnetic Catalysis around Tc 
- First order at extremely strong eB (Conjecture)

7 Behavior of the condensate

We remark already at this point that the pseudocritical temperature – as probably best visible in

the upper right panel of figure 3 for the chiral susceptibility – apparently decreases with increasing

Nb ∼ B, thereby contradicting a vast number of model calculations, see the summary given in the

introduction. Furthermore this observation also disagrees with the lattice result of [37]. First of all,

to check our simulation code we reproduced the results of [37] at a couple of points, see appendix D.

Since we find a perfect agreement, we conclude that we are left with three possible reasons for the

discrepancy. First, the lattice spacing of [37] is larger, a ≈ 0.3 fm, and also an unimproved action is

used, so lattice discretization errors may be significant. Second, the present study uses Nf = 2 + 1

flavors as opposed to the Nf = 2 of [37], and the pseudocritical temperature is known to depend on

the number of flavors [57], which may also introduce systematic differences in the dependence on the

external field. Third, the quark masses of [37] are larger than in the present study, which can also

cause drastic changes in thermodynamics – for example the nature of the transition at B = 0 depends

very strongly (and non-monotonically) on the quark masses.

Figure 4: The unrenormalized chiral condensate as a function of the flux quantum for various temperatures
around the transition for Nt = 6. A complex dependence ūu(T,Nb) is observed, since in the deconfined phase
in some regions the condensate decreases with growing Nb (left panel). The magnetic field Bmax where the
renormalized condensate ūur(T,B) is maximal, as a function of the temperature (right panel), as measured on
Nt = 6 lattices.

On closer inspection, the differences between our results and those of [37] can actually be traced

back to the behavior of the chiral condensate as a function of B for a given temperature. While the

authors of [37] observed that at any temperature the condensate increases with B, we find that this

dependence is more complex, see the left panel of figure 4 for our Nt = 6 results. At T = 155 MeV,

which is just above the zero-field pseudocritical temperature, the bare condensate decreases by a factor

of 2 between Nb = 0 and Nb = 70. As the temperature is reduced the ūu(Nb) function starts to develop

a maximum, clearly visible for T = 142 MeV and T = 136 MeV. This non-monotonic behavior is not

due to the saturation effects caused by the periodic implementation of the magnetic field on the lattice,

since this maximum is located at very different values of Nb for temperatures differing only by a few

percent. Furthermore, for high temperatures the decrease is already visible at Nb < 10 which is in the

first 5 percent of the period, even for the up quark. To better illustrate this effect and to show that

– 10 –

Figure 10. The deconfinement transition temperature against the background magnetic field. The results
of our full lattice QCD simulations (white background) are complemented by the prediction (gray background)
based on the results corresponding to the B ! 1 limit and on the extrapolation of the light quark susceptibility
peak to high magnetic fields (see the text).

the case, note that by varying the anisotropy parameter , one can continuously deform the anisotropic
theory to usual pure gauge theory, as was demonstrated in Fig. 6. Furthermore, the isotropic pure
gauge theory can be thought of as QCD with infinitely heavy quarks and thus can be continuously
transformed into full QCD by increasing the inverse quark masses from zero to their physical values.
Thus, the transition we identified at B ! 1 is indeed the same deconfinement transition that occurs
at low magnetic fields.

Let us highlight that according to this discussion, having a decreasing deconfinement transition
temperature is actually natural to QCD. Furthermore, since the B ! 1 limit is independent of the
quark masses5, a similar reduction of T

c

by the magnetic field should also take place in QCD with
heavier-than-physical quarks. However, in the latter case this reduction most probably follows an
initial increase in the transition temperature, cf. Refs. [5, 35]. Indeed, recent lattice results employing
overlap fermions and pion masses of about 500 MeV indicate inverse catalysis to occur around the
transition temperature at the magnetic field eB ⇡ 1.3 GeV2 [8].

Finally, we note that magnetic fields well above the strength (5.1) are predicted to be generated
during the electroweak phase transition in the early universe [36]. If these fields remain strong enough
until the QCD epoch, the emerging first-order phase transition might have several exciting consequences.
Via supercooling, bubbles of the confined phase can be formed as the temperature drops below T

c

,
leading to large inhomogeneities, important for nucleosynthesis [37]. Collisions between the bubbles
can also lead to the emission of gravitational waves and, thus, leave an imprint on the primordial
gravitational spectrum [38]. An absence of such signals, in turn, would imply an upper limit for the
strength of the primordial magnetic fields.
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Introduction

In order to fully characterize the QCD phase diagram in presence of a background
magnetic field B, it is crucial to find the dependence of the pseudocritical crossover
temperature on B.

I The authors of the study [1] observed for the first time inverse magnetic

catalysis, while [2] reveals the decreasing trend of the pseudocritical temper-
ature with B;

I These results are odds with the work [4], which made use of larger that
physical quark masses, unimproved gauge action and coarse lattice spacing.
The authors found a slightly decreasing dependence of TC on B and no
evidence of inverse magnetic catalysis;

I The same outcomes of [4] have been obtained with unimproved gauge action
and Nt = 4 in Nf = 3 QCD with smaller than physical quark masses [5];

I A recent work [3] shows that the external field has a strong effect on the QCD
confining properties which, at fixed temperature, are lost if the magnetic
field is strong enough. In particular, given the fact that the suppression of
the confining property of QCD takes place at lower temperatures than the
decrease of the chiral condensate, one can describe the observed trend of TC

with B in terms of deconfinement catalysis rather than “inverse magnetic
catalysis”.

What is the fate of the decreasing behaviour of the pseudocritical temperature

with improved gauge action for larger than physical quark masses?

Goals and strategy

If the effect of the background magnetic field on the QCD confining properties
plays a dominant role, we expect that the decreasing behaviour of the pseudocritical
temperature will be preserved for larger than physical quark masses.
In order to verify this assumption, we simulate Nf = 2 + 1 QCD with the same
numerical setup of [1] for three different larger than physical pion masses. We have
focused on:

I the presence (or absence) of inverse magnetic catalysis;
I the dependence of the pseudocritical temperature on the magnetic field

strength B;
I the behaviour of the sea contribution to the chiral condensate:

h ̄f f isea (B) =
1

Z(B)

Z
DUe�SYM detM[U,B, qf ,mf ]Tr

⇥
M[U, 0, qf ,mf ]

�1⇤

TC has been measured by means of chiral quantities (e.g. chiral condensate and
chiral susceptibility) and a deconfinement related one (i.e. Polyakov loop).

Numerical setup and technicalities

I We made use of the tree-level improved Symanzik gauge action and stout
smeared rooted staggered fermions;

I Zero temperature measurements have been performed on a 243 ⇥ 32 lattice,
while the finite temperature simulations on a 243 ⇥ 6 one;

I We determined three different lines of constant physics, which correspond to
a pion mass M⇡0 = 343, 440, 664 MeV. The physical ratio between strange
and light quark masses has been preserved ms/ml ⇠ 28.15;

I We performed several runs ranging over a wide temperature region at different
values of the magnetic flux quanta and after that, we measured the observables
along the lines of constant magnetic field

|e|B =
6⇡NbT2N2

t

LxLy

Results

Variation of the up+down condensate

�⌃(B, T) = ⌃(B, T)� ⌃(0, T)

No inverse magnetic catalysis of the up+down condensate for a pion mass which
exceed the threshold 440 < Mthr

ud < 664 MeV;
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Conclusions

We have found that:
I The inverse magnetic catalysis phenomenon is no more present for sufficiently

heavy quarks;
I the decreasing trend of the pseudocritical temperature on the magnetic field

strength B is preserved in the explored pion mass range;

The present results support the idea that the decrease of the pseudocritical temper-
ature TC is determined by the effect of the magnetic field on the QCD confining
properties.
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In order to fully characterize the QCD phase diagram in presence of a background
magnetic field B, it is crucial to find the dependence of the pseudocritical crossover
temperature on B.

I The authors of the study [1] observed for the first time inverse magnetic

catalysis, while [2] reveals the decreasing trend of the pseudocritical temper-
ature with B;

I These results are odds with the work [4], which made use of larger that
physical quark masses, unimproved gauge action and coarse lattice spacing.
The authors found a slightly decreasing dependence of TC on B and no
evidence of inverse magnetic catalysis;

I The same outcomes of [4] have been obtained with unimproved gauge action
and Nt = 4 in Nf = 3 QCD with smaller than physical quark masses [5];

I A recent work [3] shows that the external field has a strong effect on the QCD
confining properties which, at fixed temperature, are lost if the magnetic
field is strong enough. In particular, given the fact that the suppression of
the confining property of QCD takes place at lower temperatures than the
decrease of the chiral condensate, one can describe the observed trend of TC

with B in terms of deconfinement catalysis rather than “inverse magnetic
catalysis”.

What is the fate of the decreasing behaviour of the pseudocritical temperature

with improved gauge action for larger than physical quark masses?

Goals and strategy

If the effect of the background magnetic field on the QCD confining properties
plays a dominant role, we expect that the decreasing behaviour of the pseudocritical
temperature will be preserved for larger than physical quark masses.
In order to verify this assumption, we simulate Nf = 2 + 1 QCD with the same
numerical setup of [1] for three different larger than physical pion masses. We have
focused on:

I the presence (or absence) of inverse magnetic catalysis;
I the dependence of the pseudocritical temperature on the magnetic field
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I the behaviour of the sea contribution to the chiral condensate:
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TC has been measured by means of chiral quantities (e.g. chiral condensate and
chiral susceptibility) and a deconfinement related one (i.e. Polyakov loop).

Numerical setup and technicalities

I We made use of the tree-level improved Symanzik gauge action and stout
smeared rooted staggered fermions;

I Zero temperature measurements have been performed on a 243 ⇥ 32 lattice,
while the finite temperature simulations on a 243 ⇥ 6 one;

I We determined three different lines of constant physics, which correspond to
a pion mass M⇡0 = 343, 440, 664 MeV. The physical ratio between strange
and light quark masses has been preserved ms/ml ⇠ 28.15;

I We performed several runs ranging over a wide temperature region at different
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Conclusions

We have found that:
I The inverse magnetic catalysis phenomenon is no more present for sufficiently

heavy quarks;
I the decreasing trend of the pseudocritical temperature on the magnetic field

strength B is preserved in the explored pion mass range;

The present results support the idea that the decrease of the pseudocritical temper-
ature TC is determined by the effect of the magnetic field on the QCD confining
properties.
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Statistics with mpi = 320 MeV

Lattice2018, MSU

Heavier regime

                             A. Tomiya

L beta mass Nb Trajectories 
16 5.80 0.015 00 5500  
16 5.80 0.015 08 5000  
16 5.80 0.015 16 5000  
16 5.80 0.015 32 5000  
16 5.80 0.015 56 5000  
16 5.85 0.015 00 6500  
16 5.85 0.015 08 6500  
16 5.85 0.015 16 6500  
16 5.85 0.015 32 6500  
16 5.85 0.015 56 6500  
16 5.90 0.015 00 7500  
16 5.90 0.015 08 7500  
16 5.90 0.015 16 6500  
16 5.90 0.015 32 7500  
16 5.90 0.015 56 5466  
16 5.95 0.015 00 7500  
16 5.95 0.015 08 7500  
16 5.95 0.015 16 4500  
16 5.95 0.015 32 7500  
16 5.95 0.015 56 7500  

L beta mass Nb Trajectories 
16 6.00 0.015 00 4500  
16 6.00 0.015 08 4500  
16 6.00 0.015 16 4500  
16 6.00 0.015 32 4500  
16 6.00 0.015 56 4500  
16 6.05 0.015 00 4000  
16 6.05 0.015 08 4000  
16 6.05 0.015 16 4000  
16 6.05 0.015 32 4000  
16 6.05 0.015 56 4000  
16 6.10 0.015 00 6500  
16 6.10 0.015 08 6500  
16 6.10 0.015 16 6500  
16 6.10 0.015 32 6500  
16 6.10 0.015 56 6500  
16 6.15 0.015 00 4170  
16 6.15 0.015 08 6500  
16 6.15 0.015 16 5500  
16 6.15 0.015 32 5500  
16 6.15 0.015 56 5500  

L beta mass Nb Trajectories 
16 6.20 0.015 00 4485  
16 6.20 0.015 08 7500  
16 6.20 0.015 16 7500 
16 6.20 0.015 32 7500 
16 6.20 0.015 56 7500 

ma =0.015 
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Statistics with mpi = 80 MeV

Lattice2018, MSU

Lighter regime

                             A. Tomiya

L beta mass Nb Trajectories 
16 5.700 0.0009375 00 630  
16 5.700 0.0009375 08 1637  
16 5.700 0.0009375 16 1640  
16 5.700 0.0009375 32 10702  
16 5.700 0.0009375 56 9638  
16 5.750 0.0009375 00 700  
16 5.750 0.0009375 08 1652 
16 5.750 0.0009375 16 1644  
16 5.750 0.0009375 32 11289  
16 5.750 0.0009375 56 9363  
16 5.800 0.0009375 00 700  
16 5.800 0.0009375 08 1721  
16 5.800 0.0009375 16 1467  
16 5.800 0.0009375 32 12928 
16 5.800 0.0009375 56 11486 
16 5.850 0.0009375 00 700  
16 5.850 0.0009375 08 1734  
16 5.850 0.0009375 16 1623  
16 5.850 0.0009375 32 11693  
16 5.850 0.0009375 56 8512  

L beta mass Nb Trajectories 
16 5.900 0.0009375 00 700  
16 5.900 0.0009375 08 2329  
16 5.900 0.0009375 16 2327  
16 5.900 0.0009375 32 8002  
16 5.900 0.0009375 56 8276  
16 5.950 0.0009375 00 700  
16 5.950 0.0009375 08 1840  
16 5.950 0.0009375 16 2337  
16 5.950 0.0009375 32 13374  
16 5.950 0.0009375 56 11990  
16 6.000 0.0009375 00 700  
16 6.000 0.0009375 08 3603  
16 6.000 0.0009375 16 3700  
16 6.000 0.0009375 32 13098  
16 6.000 0.0009375 56 11690  
16 6.050 0.0009375 00 700  
16 6.050 0.0009375 08 3700  
16 6.050 0.0009375 16 3700  
16 6.050 0.0009375 32 14769  
16 6.050 0.0009375 56 14010 

ma = 0.0009375
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Nb 8 16 32 56

a^2 eB 0.20 0.39 0.79 1.37

(a^2 eB)^2 0.039 0.154 0.617 1.889

(a^2 eB)^4 0.001 0.024 0.381 3.569

(eB)^4/(eB)^2 4% 15% 62% 189%
↑NNLO contribution is large

Nx =Ny = 16 case eB =
2⇡N

b

N
x

N
y

a�2

rfull(B) = rsea(B) + rval(B) +O(B4)

for the number of eigenvalues in arbitral range [s, t]. Ncnf is the number of the configurations.

Then we can reconstruct ρ(λ).

ρ̂(λ; δ) =
1

2V̂

n[s, t]

aδ
, (33)

where aλ =
√
s/(1− s), a(λ+ δ) =

√
t/(1− t) and V̂ = V/a4. a3ρ(λ; δ) = ρ̂(λ; δ).

For calculation of the rs(B), we use spectral representation of the chiral condensate,

〈
ψψ

〉s
(B) ≈

〈
ψψ

〉s
(B)app =

∫ ∞

0

dλ
2mρs(λ;B)

λ2 +m2
. (34)

up to a finite volume (zero modes) correction ⟨|Q|⟩ /(2mV ).

χtop(B) = m2

∫ ∞

0

dλ
4m2ρsea(λ;B)

(λ2 +m2)2
. (35)

〈
ψψ

〉
=

∫ ∞

0

dλ
2mρ(λ)

λ2 +m2
. (36)

χtop = m2

∫ ∞

0

dλ
4m2ρ(λ)

(λ2 +m2)2
. (37)

We calculate the Binder cumulant [10] for the chiral condensate as a function of β,

B4(β) =

〈
(δψψ)4

〉
〈
(δψψ)2

〉2 , (38)

where δψψ = ψψ −
〈
ψψ

〉
. The minimum of Binder cumulant B4 indicates order of phase

transition: B4 = 3 corresponds to crossover, B4 ∼ 1.6 for the second order phase transition

with the Ising Z2 universality class, B4 = 1 for the first order phase transition [11]. However,

it contains forth order of a operator thus it is difficult to obtain accurate result comparing

to the susceptibility or the condensate itself.

det(D +m)(U,B) = det(D +m) + c(eB̂)2 +O(B̂4) (39)

(D +m)−1(U,B) = (D +m)−1(U) + c′(eB̂)2 +O(B̂4) (40)

10
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Nx =Ny = 16 case
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